Real-Space Chemistry on Quantum Computers: A Fault-Tolerant Algorithm with Adaptive Grids and Transcorrelated Extension
- URL: http://arxiv.org/abs/2507.20583v1
- Date: Mon, 28 Jul 2025 07:35:52 GMT
- Title: Real-Space Chemistry on Quantum Computers: A Fault-Tolerant Algorithm with Adaptive Grids and Transcorrelated Extension
- Authors: César Feniou, Christopher Cherfan, Julien Zylberman, Baptiste Claudon, Jean-Philip Piquemal, Emmanuel Giner,
- Abstract summary: First-quantized, real-space formulations of quantum chemistry on quantum computers are appealing.<n>Existing schemes employ uniform discretizations, so the resolution required to capture electron-nuclear cusps in high-density regions oversamples low-density regions, wasting computational resources.<n>We address this by deploying non-uniform, molecule-adaptive grids that concentrate points where electronic density is high.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: First-quantized, real-space formulations of quantum chemistry on quantum computers are appealing: qubit count scales logarithmically with spatial resolution, and Coulomb operators achieve quadratic instead of quartic computational scaling of two-electron interactions. However, existing schemes employ uniform discretizations, so the resolution required to capture electron-nuclear cusps in high-density regions oversamples low-density regions, wasting computational resources. We address this by deploying non-uniform, molecule-adaptive grids that concentrate points where electronic density is high. Using Voronoi partitions of these grids, the molecular Hamiltonian is expressed in a Hermitian form and in a transcorrelated, isospectral form that eliminates Coulomb singularities and yields cusp-free eigenfunctions. Both formulations slot naturally into quantum eigenvalue solvers: Hermitian Quantum Phase Estimation (QPE) and the recent generalised Quantum Eigenvalue Estimation (QEVE) protocol for its non-Hermitian, transcorrelated counterpart. Numerical validation on benchmark systems confirms that this non-heuristic ab initio framework offers a promising path for accurate ground-state chemistry on quantum hardware.
Related papers
- Entanglement renormalization circuits for $2d$ Gaussian Fermion States [0.0]
This work introduces a quantum circuit compression algorithm for Gaussian fermion states based on the multi-scale entanglement renormalization ansatz (MERA)<n>The algorithm is shown to accurately capture area-law entangled states including topologically trivial insulators, Chern insulators, and critical Dirac semimetals.<n>We also develop a novel fermion-to-qubit encoding scheme, based on an expanding $2d$ topological order, that enables implementing fermionic rotations via qubit Pauli rotations with constant Pauli weight independent of system size.
arXiv Detail & Related papers (2025-06-04T17:44:17Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Quantum-centric computation of molecular excited states with extended sample-based quantum diagonalization [0.0]
The simulation of molecular electronic structure is an important application of quantum devices.
We extend the sample-based quantum diagonalization (SQD) algorithm to determine low-lying molecular excited states.
arXiv Detail & Related papers (2024-11-01T09:33:08Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - A quantum eigenvalue solver based on tensor networks [0.0]
Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms.
We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases.
This study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.
arXiv Detail & Related papers (2024-04-16T02:04:47Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Localized Quantum Chemistry on Quantum Computers [0.6649973446180738]
Quantum chemistry calculations are typically limited by the computation cost that scales exponentially with the size of the system.
We present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation.
arXiv Detail & Related papers (2022-03-03T20:52:22Z) - Quantum Computing in Pharma: A Multilayer Embedding Approach for Near
Future Applications [0.0]
The quantum computer excels at treating a moderate number of orbitals within an active space in a fully quantum mechanical manner.
We present a quantum phase estimation calculation on F$enzi$ in a (2,2) active space on Rigetti's Aspen-11 QPU.
arXiv Detail & Related papers (2022-02-09T13:39:22Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.