Entanglement renormalization circuits for $2d$ Gaussian Fermion States
- URL: http://arxiv.org/abs/2506.04200v1
- Date: Wed, 04 Jun 2025 17:44:17 GMT
- Title: Entanglement renormalization circuits for $2d$ Gaussian Fermion States
- Authors: Sing Lam Wong, Andrew C. Potter,
- Abstract summary: This work introduces a quantum circuit compression algorithm for Gaussian fermion states based on the multi-scale entanglement renormalization ansatz (MERA)<n>The algorithm is shown to accurately capture area-law entangled states including topologically trivial insulators, Chern insulators, and critical Dirac semimetals.<n>We also develop a novel fermion-to-qubit encoding scheme, based on an expanding $2d$ topological order, that enables implementing fermionic rotations via qubit Pauli rotations with constant Pauli weight independent of system size.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The simulation of entangled ground-states of quantum materials remains challenging for classical computational methods in more than one spatial dimension, and is a prime target for quantum computational advantage. To this end, an important goal is to identify efficient quantum state preparation protocols that minimize the physical qubit number and circuit depth resources required to capture higher-dimensional quantum correlations. This work introduces a quantum circuit compression algorithm for Gaussian fermion states based on the multi-scale entanglement renormalization ansatz (MERA), which provides an exponential reduction in the circuit depth required to approximate highly-entangled ground-states relevant for quantum materials simulations. The algorithm, termed two-dimensional Gaussian MERA ($2d$ GMERA), extends MERA techniques to compress higher-dimensional Gaussian states. Through numerical simulations of the Haldane model on a honeycomb lattice, the method is shown to accurately capture area-law entangled states including topologically trivial insulators, Chern insulators, and critical Dirac semimetals. While Gaussian states alone are classically simulable, this approach establishes empirical upper bounds on quantum resources needed to prepare free fermion states that are adiabatically connected to correlated ground states, providing guidance for implementing these protocols on near-term quantum devices and offering a foundation for simulating more complex quantum materials. Finally, we develop a novel fermion-to-qubit encoding scheme, based on an expanding $2d$ topological order, that enables implementing fermionic rotations via qubit Pauli rotations with constant Pauli weight independent of system size.
Related papers
- Real-Space Chemistry on Quantum Computers: A Fault-Tolerant Algorithm with Adaptive Grids and Transcorrelated Extension [0.0]
First-quantized, real-space formulations of quantum chemistry on quantum computers are appealing.<n>Existing schemes employ uniform discretizations, so the resolution required to capture electron-nuclear cusps in high-density regions oversamples low-density regions, wasting computational resources.<n>We address this by deploying non-uniform, molecule-adaptive grids that concentrate points where electronic density is high.
arXiv Detail & Related papers (2025-07-28T07:35:52Z) - Programming optical-lattice Fermi-Hubbard quantum simulators [39.58317527488534]
We develop ground-state preparation algorithms for different fermionic models.<n>In particular, we first design variational, pre-compiled quantum circuits to prepare the ground state of the native Fermi-Hubbard model.<n>We discuss how to approximate the imaginary-time evolution using variational fermionic circuits.
arXiv Detail & Related papers (2025-02-07T16:40:58Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Orbital-free density functional theory with first-quantized quantum subroutines [0.0]
We propose a quantum-classical hybrid scheme for performing orbital-free density functional theory (OFDFT) using probabilistic imaginary-time evolution (PITE)
PITE is applied to the part of OFDFT that searches the ground state of the Hamiltonian in each self-consistent field (SCF) iteration.
It is shown that obtaining the ground state energy of Hamiltonian requires a circuit depth of $O(log N_mathrmg)$.
arXiv Detail & Related papers (2024-07-23T05:34:11Z) - Analog Quantum Simulator of a Quantum Field Theory with Fermion-Spin Systems in Silicon [34.80375275076655]
Mapping fermions to qubits is challenging in $2+1$ and higher spacetime dimensions.
We propose a native fermion-(large-)spin analog quantum simulator by utilizing dopant arrays in silicon.
arXiv Detail & Related papers (2024-07-03T18:00:52Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Fermion-qudit quantum processors for simulating lattice gauge theories
with matter [0.0]
We present a complete Rydberg-based architecture, co-designed to digitally simulate the dynamics of general gauge theories.
We show how to prepare hadrons made up of fermionic matter constituents bound by non-abelian gauge fields.
In both cases, we estimate the required resources, showing how quantum devices can be used to calculate experimentally-relevant quantities.
arXiv Detail & Related papers (2023-03-15T15:12:26Z) - Quantum Davidson Algorithm for Excited States [42.666709382892265]
We introduce the quantum Krylov subspace (QKS) method to address both ground and excited states.
By using the residues of eigenstates to expand the Krylov subspace, we formulate a compact subspace that aligns closely with the exact solutions.
Using quantum simulators, we employ the novel QDavidson algorithm to delve into the excited state properties of various systems.
arXiv Detail & Related papers (2022-04-22T15:03:03Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum optimization within lattice gauge theory model on a quantum
simulator [7.48916170938768]
Rydberg atom arrays constitute one of the most rapidly developing arenas for quantum simulation and quantum computing.
SQA protocol can be realized easily on quantum simulation platforms such as Rydberg array D-wave annealer.
arXiv Detail & Related papers (2021-05-15T04:14:38Z) - Towards simulating 2D effects in lattice gauge theories on a quantum
computer [1.327151508840301]
We propose an experimental quantum simulation scheme to study ground state properties in two-dimensional quantum electrodynamics (2D QED) using existing quantum technology.
The proposal builds on a formulation of lattice gauge theories as effective spin models in arXiv:2006.14160.
We present two Variational Quantum Eigensolver (VQE) based protocols for the study of magnetic field effects, and for taking an important first step towards computing the running coupling of QED.
arXiv Detail & Related papers (2020-08-21T01:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.