論文の概要: Adaptive Fuzzy Time Series Forecasting via Partially Asymmetric Convolution and Sub-Sliding Window Fusion
- arxiv url: http://arxiv.org/abs/2507.20641v1
- Date: Mon, 28 Jul 2025 08:58:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.060329
- Title: Adaptive Fuzzy Time Series Forecasting via Partially Asymmetric Convolution and Sub-Sliding Window Fusion
- Title(参考訳): 部分非対称畳み込みとサブスライディングウィンドウフュージョンによる適応ファジィ時系列予測
- Authors: Lijian Li,
- Abstract要約: 本稿では,スライディングウィンドウの時間に基づいて,部分的に非対称な設計を施した新しい畳み込みアーキテクチャを提案する。
提案手法は,一般的な時系列データセットのほとんどに対して,最先端の結果を得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: At present, state-of-the-art forecasting models are short of the ability to capture spatio-temporal dependency and synthesize global information at the stage of learning. To address this issue, in this paper, through the adaptive fuzzified construction of temporal data, we propose a novel convolutional architecture with partially asymmetric design based on the scheme of sliding window to realize accurate time series forecasting. First, the construction strategy of traditional fuzzy time series is improved to further extract short and long term temporal interrelation, which enables every time node to automatically possess corresponding global information and inner relationships among them in a restricted sliding window and the process does not require human involvement. Second, a bilateral Atrous algorithm is devised to reduce calculation demand of the proposed model without sacrificing global characteristics of elements. And it also allows the model to avoid processing redundant information. Third, after the transformation of time series, a partially asymmetric convolutional architecture is designed to more flexibly mine data features by filters in different directions on feature maps, which gives the convolutional neural network (CNN) the ability to construct sub-windows within existing sliding windows to model at a more fine-grained level. And after obtaining the time series information at different levels, the multi-scale features from different sub-windows will be sent to the corresponding network layer for time series information fusion. Compared with other competitive modern models, the proposed method achieves state-of-the-art results on most of popular time series datasets, which is fully verified by the experimental results.
- Abstract(参考訳): 現在、最先端の予測モデルは、時空間依存を捉え、学習の段階でグローバル情報を合成する能力に欠けています。
本稿では,時間的データの適応的ファジファイド構成により,スライディングウインドウのスキームに基づく部分的に非対称な新しい畳み込みアーキテクチャを提案し,正確な時系列予測を実現する。
まず、従来のファジィ時系列の構成戦略を改善して、短時間・長期の時間的相互関係をさらに抽出し、各時間ノードが対応する大域情報や内部関係を、制限されたスライディングウィンドウで自動的に保持し、人間の関与を必要としないようにする。
第二に、要素のグローバルな特性を犠牲にすることなく、提案したモデルの計算要求を減らすために、両側アラスアルゴリズムが考案された。
また、モデルが冗長な情報を処理するのを避けることもできる。
第三に、時系列の変換の後、部分的に非対称な畳み込みアーキテクチャは、特徴マップ上の異なる方向のフィルタによってデータ特徴をより柔軟にマイニングするように設計されており、これにより、畳み込みニューラルネットワーク(CNN)は、既存のスライディングウィンドウ内で、よりきめ細かいレベルでモデルを構築することができる。
そして、異なるレベルで時系列情報を得た後、異なるサブウィンドウからのマルチスケール特徴を対応するネットワーク層に送信し、時系列情報融合を行う。
他の競合する現代モデルと比較して,提案手法は,実験結果によって完全に検証される人気時系列データセットのほとんどにおいて,最先端の結果が得られる。
関連論文リスト
- STLight: a Fully Convolutional Approach for Efficient Predictive Learning by Spatio-Temporal joint Processing [6.872340834265972]
チャネルワイドおよび深度ワイドの畳み込みを学習可能な層としてのみ依存する,S時間学習のための新しい方法STLightを提案する。
STLightは、空間次元と時間次元を並べ替えることで、従来の畳み込みアプローチの限界を克服する。
本アーキテクチャは,データセットや設定のSTLベンチマーク上での最先端性能を実現するとともに,パラメータや計算FLOPの計算効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-15T13:53:19Z) - Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - sTransformer: A Modular Approach for Extracting Inter-Sequential and Temporal Information for Time-Series Forecasting [6.434378359932152]
既存のTransformerベースのモデルを,(1)モデル構造の変更,(2)入力データの変更の2つのタイプに分類する。
我々は、シーケンシャル情報と時間情報の両方をフルにキャプチャするSequence and Temporal Convolutional Network(STCN)を導入する$textbfsTransformer$を提案する。
我々は,線形モデルと既存予測モデルとを長期時系列予測で比較し,新たな成果を得た。
論文 参考訳(メタデータ) (2024-08-19T06:23:41Z) - Context Neural Networks: A Scalable Multivariate Model for Time Series Forecasting [5.5711773076846365]
実世界の時系列は、しばしば孤立して取得できない複雑な相互依存性を示す。
本稿では,時系列モデルに関連性のある文脈洞察を付加する,効率的な線形複雑化手法であるContext Neural Networkを紹介する。
論文 参考訳(メタデータ) (2024-05-12T00:21:57Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
提案するOpenSTLは,一般的なアプローチを再帰的モデルと再帰的モデルに分類する。
我々は, 合成移動物体軌道, 人間の動き, 運転シーン, 交通流, 天気予報など, さまざまな領域にわたるデータセットの標準評価を行う。
リカレントフリーモデルは、リカレントモデルよりも効率と性能のバランスが良いことがわかった。
論文 参考訳(メタデータ) (2023-06-20T03:02:14Z) - Global-to-Local Modeling for Video-based 3D Human Pose and Shape
Estimation [53.04781510348416]
フレーム内精度とフレーム間スムーズさにより,映像に基づく3次元人間のポーズと形状推定を評価する。
エンドツーエンドフレームワークGLoT(Global-to-Local Transformer)における長期的・短期的相関のモデル化を構造的に分離することを提案する。
我々のGLoTは、一般的なベンチマーク(3DPW、MPI-INF-3DHP、Human3.6M)において、最も低いモデルパラメータを持つ従来の最先端の手法を上回る。
論文 参考訳(メタデータ) (2023-03-26T14:57:49Z) - Time Series Forecasting via Semi-Asymmetric Convolutional Architecture
with Global Atrous Sliding Window [0.0]
本稿では,時系列予測の問題に対処するために提案手法を提案する。
現代のモデルのほとんどは、短い範囲の情報のみに焦点を当てており、時系列予測のような問題で致命的なものである。
パフォーマンス上のアドバンテージがあることを実験的に検証した3つの主要なコントリビューションを行います。
論文 参考訳(メタデータ) (2023-01-31T15:07:31Z) - Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution [57.71199089609161]
長期的時系列予測(LTTF)は、風力発電計画など、多くのアプリケーションで需要が高まっている。
トランスフォーマーモデルは、高い計算自己認識機構のため、高い予測能力を提供するために採用されている。
LTTFの既存の手法を3つの面で区別する,Conformer という,効率的なTransformer ベースモデルを提案する。
論文 参考訳(メタデータ) (2023-01-05T13:59:29Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
本稿では,ビデオシーケンスの長期相関を効率的に学習できる高次LSTMモデルを提案する。
これは、時間をかけて畳み込み特徴を組み合わせることによって予測を行う、新しいテンソルトレインモジュールによって達成される。
この結果は,幅広いアプリケーションやデータセットにおいて,最先端のパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2020-02-21T05:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。