Optimizing Tensor Network Partitioning using Simulated Annealing
- URL: http://arxiv.org/abs/2507.20667v1
- Date: Mon, 28 Jul 2025 09:43:01 GMT
- Title: Optimizing Tensor Network Partitioning using Simulated Annealing
- Authors: Manuel Geiger, Qunsheng Huang, Christian B. Mendl,
- Abstract summary: tensor networks have proven to be a valuable tool, for instance, in the classical simulation of (strongly correlated) quantum systems.<n>As the size of the systems increases, contracting larger tensor networks becomes computationally demanding.<n> Efficiently distributing the contraction task across multiple nodes is critical, as both computational and memory costs are highly sensitive to the chosen partitioning strategy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tensor networks have proven to be a valuable tool, for instance, in the classical simulation of (strongly correlated) quantum systems. As the size of the systems increases, contracting larger tensor networks becomes computationally demanding. In this work, we study distributed memory architectures intended for high-performance computing implementations to solve this task. Efficiently distributing the contraction task across multiple nodes is critical, as both computational and memory costs are highly sensitive to the chosen partitioning strategy. While prior work has employed general-purpose hypergraph partitioning algorithms, these approaches often overlook the specific structure and cost characteristics of tensor network contractions. We introduce a simulated annealing-based method that iteratively refines the partitioning to minimize the total operation count, thereby reducing time-to-solution. The algorithm is evaluated on MQT Bench circuits and achieves an 8$\times$ average reduction in computational cost and an 8$\times$ average reduction in memory cost compared to a naive partitioning.
Related papers
- Memory-aware Scheduling for Complex Wired Networks with Iterative Graph
Optimization [4.614780125575351]
We propose an efficient memory-aware scheduling framework based on iterative graph optimization.
Our framework features an iterative graph fusion algorithm that simplifies the graph while preserving the scheduling optimality.
arXiv Detail & Related papers (2023-08-26T14:52:02Z) - Learning Discrete Weights and Activations Using the Local
Reparameterization Trick [21.563618480463067]
In computer vision and machine learning, a crucial challenge is to lower the computation and memory demands for neural network inference.
By binarizing the network weights and activations, one can significantly reduce computational complexity.
This leads to a more efficient neural network inference that can be deployed on low-resource devices.
arXiv Detail & Related papers (2023-07-04T12:27:10Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
We propose a novel algorithm that uses a random feature approximation (RFA) of the Neural Network Gaussian Process (NNGP) kernel.
Our algorithm provides at least a 100-fold speedup over KIP and can run on a single GPU.
Our new method, termed an RFA Distillation (RFAD), performs competitively with KIP and other dataset condensation algorithms in accuracy over a range of large-scale datasets.
arXiv Detail & Related papers (2022-10-21T15:56:13Z) - Communication-Efficient Adam-Type Algorithms for Distributed Data Mining [93.50424502011626]
We propose a class of novel distributed Adam-type algorithms (emphi.e., SketchedAMSGrad) utilizing sketching.
Our new algorithm achieves a fast convergence rate of $O(frac1sqrtnT + frac1(k/d)2 T)$ with the communication cost of $O(k log(d))$ at each iteration.
arXiv Detail & Related papers (2022-10-14T01:42:05Z) - Combinatorial optimization for low bit-width neural networks [23.466606660363016]
Low-bit width neural networks have been extensively explored for deployment on edge devices to reduce computational resources.
Existing approaches have focused on gradient-based optimization in a two-stage train-and-compress setting.
We show that a combination of greedy coordinate descent and this novel approach can attain competitive accuracy on binary classification tasks.
arXiv Detail & Related papers (2022-06-04T15:02:36Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
'VPUNN' is a neural network-based cost model trained on low-level task profiling.
It consistently outperforms the state-of-the-art cost modeling in Intel's line of VPU processors.
arXiv Detail & Related papers (2022-05-09T22:48:39Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
We study the interplay between pruning and quantization during the training of neural networks for ultra low latency applications.
We find that quantization-aware pruning yields more computationally efficient models than either pruning or quantization alone for our task.
arXiv Detail & Related papers (2021-02-22T19:00:05Z) - Attentive Gaussian processes for probabilistic time-series generation [4.94950858749529]
We propose a computationally efficient attention-based network combined with the Gaussian process regression to generate real-valued sequence.
We develop a block-wise training algorithm to allow mini-batch training of the network while the GP is trained using full-batch.
The algorithm has been proved to converge and shows comparable, if not better, quality of the found solution.
arXiv Detail & Related papers (2021-02-10T01:19:15Z) - ItNet: iterative neural networks with small graphs for accurate and
efficient anytime prediction [1.52292571922932]
In this study, we introduce a class of network models that have a small memory footprint in terms of their computational graphs.
We show state-of-the-art results for semantic segmentation on the CamVid and Cityscapes datasets.
arXiv Detail & Related papers (2021-01-21T15:56:29Z) - Coded Distributed Computing with Partial Recovery [56.08535873173518]
We introduce a novel coded matrix-vector multiplication scheme, called coded computation with partial recovery (CCPR)
CCPR reduces both the computation time and the decoding complexity by allowing a trade-off between the accuracy and the speed of computation.
We then extend this approach to distributed implementation of more general computation tasks by proposing a coded communication scheme with partial recovery.
arXiv Detail & Related papers (2020-07-04T21:34:49Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
We propose a framework for deep-unfolding, where a general form of iterative algorithm induced deep-unfolding neural network (IAIDNN) is developed.
An efficient IAIDNN based on the structure of the classic weighted minimum mean-square error (WMMSE) iterative algorithm is developed.
We show that the proposed IAIDNN efficiently achieves the performance of the iterative WMMSE algorithm with reduced computational complexity.
arXiv Detail & Related papers (2020-06-15T02:57:57Z) - Accelerating Neural Network Inference by Overflow Aware Quantization [16.673051600608535]
Inherited heavy computation of deep neural networks prevents their widespread applications.
We propose an overflow aware quantization method by designing trainable adaptive fixed-point representation.
With the proposed method, we are able to fully utilize the computing power to minimize the quantization loss and obtain optimized inference performance.
arXiv Detail & Related papers (2020-05-27T11:56:22Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.