論文の概要: Algorithmic Fairness: A Runtime Perspective
- arxiv url: http://arxiv.org/abs/2507.20711v1
- Date: Mon, 28 Jul 2025 11:04:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.087157
- Title: Algorithmic Fairness: A Runtime Perspective
- Title(参考訳): Algorithmic Fairness: 実行時の展望
- Authors: Filip Cano, Thomas A. Henzinger, Konstantin Kueffner,
- Abstract要約: 本稿では、フェアネスをランタイムプロパティとして分析するためのフレームワークを提案する。
本研究では, 不正な結果やコインバイアスに表される公正性を監視し, 強制することの問題点について検討する。
- 参考スコア(独自算出の注目度): 6.409194734638881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fairness in AI is traditionally studied as a static property evaluated once, over a fixed dataset. However, real-world AI systems operate sequentially, with outcomes and environments evolving over time. This paper proposes a framework for analysing fairness as a runtime property. Using a minimal yet expressive model based on sequences of coin tosses with possibly evolving biases, we study the problems of monitoring and enforcing fairness expressed in either toss outcomes or coin biases. Since there is no one-size-fits-all solution for either problem, we provide a summary of monitoring and enforcement strategies, parametrised by environment dynamics, prediction horizon, and confidence thresholds. For both problems, we present general results under simple or minimal assumptions. We survey existing solutions for the monitoring problem for Markovian and additive dynamics, and existing solutions for the enforcement problem in static settings with known dynamics.
- Abstract(参考訳): AIの公正性は、伝統的に、固定データセットよりも1度評価された静的プロパティとして研究されている。
しかし、現実のAIシステムは順次動作し、結果と環境は時間とともに進化する。
本稿では、フェアネスをランタイムプロパティとして分析するためのフレームワークを提案する。
コイントスの列に基づく最小でも表現力に富んだモデルを用いて,コイントスの結果やコイントスのバイアスに表される公正さを監視・強制する問題について検討する。
いずれの問題にもオールスケールのソリューションは存在しないため、環境力学、予測地平線、信頼しきい値によってパラメトリされた監視および執行戦略の要約を提供する。
どちらの問題に対しても、単純あるいは最小の仮定で一般的な結果を示す。
マルコフ力学および加法力学のモニタリング問題に対する既存の解と、既知の力学を用いた静的設定における適用問題に対する既存の解について検討する。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Conditional Kernel Imitation Learning for Continuous State Environments [9.750698192309978]
条件付きカーネル密度推定に基づく新しい模倣学習フレームワークを提案する。
我々は、多くの最先端ILアルゴリズムよりも一貫して優れた経験的性能を示す。
論文 参考訳(メタデータ) (2023-08-24T05:26:42Z) - A Unified Framework of Policy Learning for Contextual Bandit with
Confounding Bias and Missing Observations [108.89353070722497]
本研究では,観測データを用いた最適ポリシの獲得を目的とした,オフラインのコンテキスト的帯域幅問題について検討する。
本稿では、積分方程式系の解として報酬関数を形成するCausal-Adjusted Pessimistic(CAP)ポリシー学習という新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-20T15:17:31Z) - Fairness in Forecasting of Observations of Linear Dynamical Systems [10.762748665074794]
本稿では, 時系列予測問題において, 公平性と即時公正性の2つの自然概念を導入する。
公平性に制約された学習問題の最適化のためのグローバル収束手法を示す。
本手法の有効性を示すために,保険申請によるバイアスデータセットとよく知られたCompASデータセットについて検討した。
論文 参考訳(メタデータ) (2022-09-12T14:32:12Z) - Globally Convergent Policy Search over Dynamic Filters for Output
Estimation [64.90951294952094]
我々は,大域的に最適な$textitdynamic$ filterに収束する最初の直接ポリシー探索アルゴリズム凸を導入する。
我々は、情報化が前述の優越性を克服していることを示す。
論文 参考訳(メタデータ) (2022-02-23T18:06:20Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
我々は、シーケンシャルデータから、政治以外の評価と学習について研究する。
動的パーソナライズされた価格設定などの問題の因果構造を形式化する。
本報告では,本クラスにおけるアウト・オブ・サンプル・ポリシーの性能改善について述べる。
論文 参考訳(メタデータ) (2021-10-19T16:15:56Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs [14.309243378538012]
線形システムのロバストかつ適応的なモデル予測制御(MPC)の問題を考える。
この設定に対して、最初のエンドツーエンドのサブ最適トラクティリティ解析を提供する。
論文 参考訳(メタデータ) (2020-02-25T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。