論文の概要: Multilingual Self-Taught Faithfulness Evaluators
- arxiv url: http://arxiv.org/abs/2507.20752v1
- Date: Mon, 28 Jul 2025 12:01:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 16:23:58.103476
- Title: Multilingual Self-Taught Faithfulness Evaluators
- Title(参考訳): マルチリンガル自己学習忠実度評価器
- Authors: Carlo Alfano, Aymen Al Marjani, Zeno Jonke, Amin Mantrach, Saab Mansour, Marcello Federico,
- Abstract要約: 合成多言語要約データからのみ学習するフレームワークである。
我々のフレームワークは、最先端の英語評価器や機械翻訳に基づくアプローチなど、既存のベースラインよりも改善されている。
- 参考スコア(独自算出の注目度): 11.200203292660758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing use of large language models (LLMs) has increased the need for automatic evaluation systems, particularly to address the challenge of information hallucination. Although existing faithfulness evaluation approaches have shown promise, they are predominantly English-focused and often require expensive human-labeled training data for fine-tuning specialized models. As LLMs see increased adoption in multilingual contexts, there is a need for accurate faithfulness evaluators that can operate across languages without extensive labeled data. This paper presents Self-Taught Evaluators for Multilingual Faithfulness, a framework that learns exclusively from synthetic multilingual summarization data while leveraging cross-lingual transfer learning. Through experiments comparing language-specific and mixed-language fine-tuning approaches, we demonstrate a consistent relationship between an LLM's general language capabilities and its performance in language-specific evaluation tasks. Our framework shows improvements over existing baselines, including state-of-the-art English evaluators and machine translation-based approaches.
- Abstract(参考訳): 大規模言語モデル(LLM)の利用が増加し,特に情報幻覚の課題に対処するために,自動評価システムの必要性が高まっている。
既存の忠実度評価アプローチは将来性を示しているが、それらは主に英語に焦点を絞ったものであり、細調整専門モデルのための高価な人間ラベル付きトレーニングデータを必要とすることが多い。
LLMが多言語文脈での採用を拡大するにつれ、広範囲なラベル付きデータなしで言語間で動作可能な正確な忠実度評価器の必要性が高まっている。
本稿では,多言語間移動学習を生かしながら,合成多言語要約データからのみ学習するフレームワークである多言語忠実性のための自己学習評価手法を提案する。
言語特化手法と混合言語微調整手法の比較実験により,LLMの汎用言語能力と言語特化評価課題における性能の整合性を実証した。
我々のフレームワークは、最先端の英語評価器や機械翻訳に基づくアプローチなど、既存のベースラインよりも改善されている。
関連論文リスト
- Entity-aware Cross-lingual Claim Detection for Automated Fact-checking [7.242609314791262]
我々は,多言語クレームを扱うために,多言語クレームを適切に一般化するエンティティ対応言語間クレーム検出モデルであるEx-Claimを紹介する。
27言語にまたがる一貫したパフォーマンス向上と、トレーニング中に目に見えない言語間での堅牢な知識伝達を示す。
論文 参考訳(メタデータ) (2025-03-19T14:00:55Z) - Enhancing Multilingual Language Models for Code-Switched Input Data [0.0]
本研究では,コード切替データセット上でのマルチ言語BERT(mBERT)の事前学習により,重要なNLPタスクにおけるモデルの性能が向上するかどうかを検討する。
本研究では,Spanglish ツイートのデータセットを用いて事前学習を行い,ベースラインモデルに対する事前学習モデルの評価を行う。
以上の結果から,事前学習したmBERTモデルは,与えられたタスクのベースラインモデルよりも優れ,また,音声タグ付けの分野でも有意な改善が見られた。
論文 参考訳(メタデータ) (2025-03-11T02:49:41Z) - P-MMEval: A Parallel Multilingual Multitask Benchmark for Consistent Evaluation of LLMs [84.24644520272835]
本稿では,P-MMEvalを提案する。P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P-MMEval,P -M
P-MMEvalは、さまざまなデータセットにわたって一貫した言語カバレッジを提供し、並列サンプルを提供する。
我々は、モデルとタスク間の性能を比較するために、代表的多言語モデル系列に関する広範な実験を行う。
論文 参考訳(メタデータ) (2024-11-14T01:29:36Z) - Analyzing the Evaluation of Cross-Lingual Knowledge Transfer in
Multilingual Language Models [12.662039551306632]
その結果,多言語モデルの高性能化は,実際の言語知識の伝達を必要としない要因が主な原因であることが示唆された。
具体的には、特に低リソース言語において、言語間で転送されたものは、主にデータアーチファクトとバイアスです。
論文 参考訳(メタデータ) (2024-02-03T09:41:52Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Cross-lingual Lifelong Learning [53.06904052325966]
本稿では,言語間連続学習(CCL)の評価パラダイムを提案する。
マルチリンガルなシーケンシャルな学習を特に難しいものにするための洞察を提供する。
この分析の意味は、異なる言語間連続学習のデシダータを測り、バランスをとる方法のレシピを含む。
論文 参考訳(メタデータ) (2022-05-23T09:25:43Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
画像認識言語理解評価ベンチマークについて紹介する。
IGLUEは、視覚的質問応答、クロスモーダル検索、グラウンドド推論、20言語にわたるグラウンドドエンターテイメントタスクをまとめて提供する。
翻訳-テストの転送はゼロショットの転送よりも優れており、少数ショットの学習は多くのタスクに役立てることが難しい。
論文 参考訳(メタデータ) (2022-01-27T18:53:22Z) - On Cross-Lingual Retrieval with Multilingual Text Encoders [51.60862829942932]
言語間文書・文検索タスクにおける最先端多言語エンコーダの適合性について検討する。
教師なしのアドホック文と文書レベルのCLIR実験でそれらの性能をベンチマークする。
我々は、ゼロショット言語とドメイン転送CLIR実験のシリーズにおける英語関連データに基づいて、教師付き方式で微調整された多言語エンコーダの評価を行った。
論文 参考訳(メタデータ) (2021-12-21T08:10:27Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。