Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
- URL: http://arxiv.org/abs/2507.20765v1
- Date: Mon, 28 Jul 2025 12:18:52 GMT
- Title: Onboard Hyperspectral Super-Resolution with Deep Pushbroom Neural Network
- Authors: Davide Piccinini, Diego Valsesia, Enrico Magli,
- Abstract summary: Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution.<n>We present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR), that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines.<n>This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on
- Score: 21.836830270709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imagers on satellites obtain the fine spectral signatures essential for distinguishing one material from another at the expense of limited spatial resolution. Enhancing the latter is thus a desirable preprocessing step in order to further improve the detection capabilities offered by hyperspectral images on downstream tasks. At the same time, there is a growing interest towards deploying inference methods directly onboard of satellites, which calls for lightweight image super-resolution methods that can be run on the payload in real time. In this paper, we present a novel neural network design, called Deep Pushbroom Super-Resolution (DPSR) that matches the pushbroom acquisition of hyperspectral sensors by processing an image line by line in the along-track direction with a causal memory mechanism to exploit previously acquired lines. This design greatly limits memory requirements and computational complexity, achieving onboard real-time performance, i.e., the ability to super-resolve a line in the time it takes to acquire the next one, on low-power hardware. Experiments show that the quality of the super-resolved images is competitive or even outperforms state-of-the-art methods that are significantly more complex.
Related papers
- Rethinking the Upsampling Layer in Hyperspectral Image Super Resolution [51.98465973507002]
We propose a novel lightweight SHSR network, i.e., LKCA-Net, that incorporates channel attention to calibrate multi-scale channel features of hyperspectral images.<n>We demonstrate, for the first time, that the low-rank property of the learnable upsampling layer is a key bottleneck in lightweight SHSR methods.
arXiv Detail & Related papers (2025-01-30T15:43:34Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
This paper focuses on how to embed the high-dimensional spatial-spectral information of hyperspectral (HS) images efficiently and effectively.
We formulate HS embedding as an approximation of the posterior distribution of a set of carefully-defined HS embedding events.
Then, we incorporate the proposed feature embedding scheme into a source-consistent super-resolution framework that is physically-interpretable.
Experiments over three common benchmark datasets demonstrate that PDE-Net achieves superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-30T06:59:01Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image
Super-resolution [9.022005574190182]
We design a network based on the transformer for fusing the low-resolution hyperspectral images and high-resolution multispectral images.
Considering the LR-HSIs hold the main spectral structure, the network focuses on the spatial detail estimation.
Various experiments and quality indexes show our approach's superiority compared with other state-of-the-art methods.
arXiv Detail & Related papers (2021-09-05T14:00:34Z) - UltraSR: Spatial Encoding is a Missing Key for Implicit Image
Function-based Arbitrary-Scale Super-Resolution [74.82282301089994]
In this work, we propose UltraSR, a simple yet effective new network design based on implicit image functions.
We show that spatial encoding is indeed a missing key towards the next-stage high-accuracy implicit image function.
Our UltraSR sets new state-of-the-art performance on the DIV2K benchmark under all super-resolution scales.
arXiv Detail & Related papers (2021-03-23T17:36:42Z) - Spatial-Spectral Feedback Network for Super-Resolution of Hyperspectral
Imagery [11.76638109321532]
High-dimensional and complex spectral patterns in hyperspectral image make it difficult to explore spatial information and spectral information among bands simultaneously.
The number of available hyperspectral training samples is extremely small, which can easily lead to overfitting when training a deep neural network.
We propose a novel Spatial-Spectral Feedback Network (SSFN) to refine low-level representations among local spectral bands with high-level information from global spectral bands.
arXiv Detail & Related papers (2021-03-07T13:28:48Z) - Multi-image Super Resolution of Remotely Sensed Images using Residual
Feature Attention Deep Neural Networks [1.3764085113103222]
The presented research proposes a novel residual attention model (RAMS) that efficiently tackles the multi-image super-resolution task.
We introduce the mechanism of visual feature attention with 3D convolutions in order to obtain an aware data fusion and information extraction.
Our representation learning network makes extensive use of nestled residual connections to let flow redundant low-frequency signals.
arXiv Detail & Related papers (2020-07-06T22:54:02Z) - Hyperspectral Image Super-resolution via Deep Progressive Zero-centric
Residual Learning [62.52242684874278]
Cross-modality distribution of spatial and spectral information makes the problem challenging.
We propose a novel textitlightweight deep neural network-based framework, namely PZRes-Net.
Our framework learns a high resolution and textitzero-centric residual image, which contains high-frequency spatial details of the scene.
arXiv Detail & Related papers (2020-06-18T06:32:11Z) - Hyperspectral Image Super-resolution via Deep Spatio-spectral
Convolutional Neural Networks [32.10057746890683]
We propose a simple and efficient architecture for deep convolutional neural networks to fuse a low-resolution hyperspectral image and a high-resolution multispectral image.
The proposed network architecture achieves best performance compared with recent state-of-the-art hyperspectral image super-resolution approaches.
arXiv Detail & Related papers (2020-05-29T05:56:50Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.