Modeling User Behavior from Adaptive Surveys with Supplemental Context
- URL: http://arxiv.org/abs/2507.20919v1
- Date: Mon, 28 Jul 2025 15:19:54 GMT
- Title: Modeling User Behavior from Adaptive Surveys with Supplemental Context
- Authors: Aman Shukla, Daniel Patrick Scantlebury, Rishabh Kumar,
- Abstract summary: We present LANTERN, a modular architecture for modeling user behavior by fusing adaptive survey responses with contextual signals.<n>We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion.<n>We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis.
- Score: 1.433758865948252
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modeling user behavior is critical across many industries where understanding preferences, intent, or decisions informs personalization, targeting, and strategic outcomes. Surveys have long served as a classical mechanism for collecting such behavioral data due to their interpretability, structure, and ease of deployment. However, surveys alone are inherently limited by user fatigue, incomplete responses, and practical constraints on their length making them insufficient for capturing user behavior. In this work, we present LANTERN (Late-Attentive Network for Enriched Response Modeling), a modular architecture for modeling user behavior by fusing adaptive survey responses with supplemental contextual signals. We demonstrate the architectural value of maintaining survey primacy through selective gating, residual connections and late fusion via cross-attention, treating survey data as the primary signal while incorporating external modalities only when relevant. LANTERN outperforms strong survey-only baselines in multi-label prediction of survey responses. We further investigate threshold sensitivity and the benefits of selective modality reliance through ablation and rare/frequent attribute analysis. LANTERN's modularity supports scalable integration of new encoders and evolving datasets. This work provides a practical and extensible blueprint for behavior modeling in survey-centric applications.
Related papers
- Stochastic Encodings for Active Feature Acquisition [100.47043816019888]
Active Feature Acquisition is an instance-wise, sequential decision making problem.<n>The aim is to dynamically select which feature to measure based on current observations, independently for each test instance.<n>Common approaches either use Reinforcement Learning, which experiences training difficulties, or greedily maximize the conditional mutual information of the label and unobserved features, which makes myopic.<n>We introduce a latent variable model, trained in a supervised manner. Acquisitions are made by reasoning about the features across many possible unobserved realizations in a latent space.
arXiv Detail & Related papers (2025-08-03T23:48:46Z) - Intent-Aware Neural Query Reformulation for Behavior-Aligned Product Search [0.0]
This work introduces a robust data pipeline designed to mine and analyze large-scale buyer query logs.<n>The pipeline systematically captures patterns indicative of latent purchase intent, enabling the construction of a high-fidelity, intent-rich dataset.<n>Our findings highlight the value of intent-centric modeling in bridging the gap between sparse user inputs and complex product discovery goals.
arXiv Detail & Related papers (2025-07-29T20:20:07Z) - Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
We frame this problem in a causal paradigm, providing the rich toolbox of causality to identify persistent challenges.<n>Inheriting from the literature of causal inference, we identify key assumptions necessary for reliable generalisation.<n>We illustrate failure modes of naive reward models and demonstrate how causally-inspired approaches can improve model robustness.
arXiv Detail & Related papers (2025-06-06T10:45:42Z) - Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Causality and "In-the-Wild" Video-Based Person Re-ID: A Survey [14.370360290704197]
Video-based person re-identification (Re-ID) remains brittle in real-world deployments despite impressive benchmark performance.<n>This survey examines the emerging role of causal reasoning as a principled alternative to traditional correlation-based approaches.
arXiv Detail & Related papers (2025-05-26T22:03:23Z) - Behavior Modeling Space Reconstruction for E-Commerce Search [32.46624795081706]
Search systems model user behaviors by combining user preference and query item relevance statically, often through a fixed logical 'and' relationship.<n>This paper reexamines existing approaches through a unified lens using both causal graphs and Venn diagrams.<n>To surmount these challenges, our research introduces a novel framework, which enhances search accuracy through two components to reconstruct the behavior modeling space.
arXiv Detail & Related papers (2025-01-30T09:17:04Z) - IGANN Sparse: Bridging Sparsity and Interpretability with Non-linear Insight [4.010646933005848]
IGANN Sparse is a novel machine learning model from the family of generalized additive models.
It promotes sparsity through a non-linear feature selection process during training.
This ensures interpretability through improved model sparsity without sacrificing predictive performance.
arXiv Detail & Related papers (2024-03-17T22:44:36Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
We propose a novel graph-enhanced click model (GraphCM) for web search.
We exploit both intra-session and inter-session information for the sparsity and cold-start problems.
arXiv Detail & Related papers (2022-06-17T08:32:43Z) - Open vs Closed-ended questions in attitudinal surveys -- comparing,
combining, and interpreting using natural language processing [3.867363075280544]
Topic Modeling could significantly reduce the time to extract information from open-ended responses.
Our research uses Topic Modeling to extract information from open-ended questions and compare its performance with closed-ended responses.
arXiv Detail & Related papers (2022-05-03T06:01:03Z) - Paired Examples as Indirect Supervision in Latent Decision Models [109.76417071249945]
We introduce a way to leverage paired examples that provide stronger cues for learning latent decisions.
We apply our method to improve compositional question answering using neural module networks on the DROP dataset.
arXiv Detail & Related papers (2021-04-05T03:58:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.