Partially Observable Monte-Carlo Graph Search
- URL: http://arxiv.org/abs/2507.20951v1
- Date: Mon, 28 Jul 2025 16:02:36 GMT
- Title: Partially Observable Monte-Carlo Graph Search
- Authors: Yang You, Vincent Thomas, Alex Schutz, Robert Skilton, Nick Hawes, Olivier Buffet,
- Abstract summary: We propose a new sampling-based algorithm, the partially observable Monte-Carlo graph search (POMCGS) to solve large POMDPs offline.<n>POMCGS folds this search tree on the fly to construct a policy graph, so that computations can be drastically reduced.<n>We demonstrate that POMCGS can generate policies on the most challenging POMDPs, which cannot be computed by previous offline algorithms.
- Score: 15.40087235187116
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, large partially observable Markov decision processes (POMDPs) are often solved by sampling-based online methods which interleave planning and execution phases. However, a pre-computed offline policy is more desirable in POMDP applications with time or energy constraints. But previous offline algorithms are not able to scale up to large POMDPs. In this article, we propose a new sampling-based algorithm, the partially observable Monte-Carlo graph search (POMCGS) to solve large POMDPs offline. Different from many online POMDP methods, which progressively develop a tree while performing (Monte-Carlo) simulations, POMCGS folds this search tree on the fly to construct a policy graph, so that computations can be drastically reduced, and users can analyze and validate the policy prior to embedding and executing it. Moreover, POMCGS, together with action progressive widening and observation clustering methods provided in this article, is able to address certain continuous POMDPs. Through experiments, we demonstrate that POMCGS can generate policies on the most challenging POMDPs, which cannot be computed by previous offline algorithms, and these policies' values are competitive compared with the state-of-the-art online POMDP algorithms.
Related papers
- Action-Gradient Monte Carlo Tree Search for Non-Parametric Continuous (PO)MDPs [7.170248667518935]
Action-Gradient Monte Carlo Tree Search (AGMCTS) is the first planner to blend non-parametric particle search with online gradient refinement in POMDPs.<n>AGMCTS outperforms widely-used sample-only solvers in solution quality.
arXiv Detail & Related papers (2025-03-15T15:51:06Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - A Surprisingly Simple Continuous-Action POMDP Solver: Lazy Cross-Entropy
Search Over Policy Trees [5.250288418639076]
We propose an online POMDP solver called Lazy Cross-Entropy Search Over Policy Trees (LCEOPT)
At each planning step, our method uses a novel lazy Cross-Entropy method to search the space of policy trees.
Our method is surprisingly simple as compared to existing state-of-the-art methods, yet empirically outperforms them on several continuous-action POMDP problems.
arXiv Detail & Related papers (2023-05-14T03:12:53Z) - Learning Logic Specifications for Soft Policy Guidance in POMCP [71.69251176275638]
Partially Observable Monte Carlo Planning (POMCP) is an efficient solver for Partially Observable Markov Decision Processes (POMDPs)
POMCP suffers from sparse reward function, namely, rewards achieved only when the final goal is reached.
In this paper, we use inductive logic programming to learn logic specifications from traces of POMCP executions.
arXiv Detail & Related papers (2023-03-16T09:37:10Z) - Optimality Guarantees for Particle Belief Approximation of POMDPs [55.83001584645448]
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems.
POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid.
We propose a theory characterizing the approximation error of the particle filtering techniques that these algorithms use.
arXiv Detail & Related papers (2022-10-10T21:11:55Z) - Continuous Monte Carlo Graph Search [61.11769232283621]
Continuous Monte Carlo Graph Search ( CMCGS) is an extension of Monte Carlo Tree Search (MCTS) to online planning.
CMCGS takes advantage of the insight that, during planning, sharing the same action policy between several states can yield high performance.
It can be scaled up through parallelization, and it outperforms the Cross-Entropy Method (CEM) in continuous control with learned dynamics models.
arXiv Detail & Related papers (2022-10-04T07:34:06Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Semi-Markov Offline Reinforcement Learning for Healthcare [57.15307499843254]
We introduce three offline RL algorithms, namely, SDQN, SDDQN, and SBCQ.
We experimentally demonstrate that only these algorithms learn the optimal policy in variable-time environments.
We apply our new algorithms to a real-world offline dataset pertaining to warfarin dosing for stroke prevention.
arXiv Detail & Related papers (2022-03-17T14:51:21Z) - On-Line Policy Iteration for Infinite Horizon Dynamic Programming [0.0]
We propose an on-line policy iteration (PI) algorithm for finite-state infinite horizon discounted dynamic programming.
The algorithm converges in a finite number of stages to a type of locally optimal policy.
It is also well-suited for on-line PI algorithms with value and policy approximations.
arXiv Detail & Related papers (2021-06-01T19:50:22Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.