SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
- URL: http://arxiv.org/abs/2507.20984v2
- Date: Wed, 30 Jul 2025 06:29:40 GMT
- Title: SmallThinker: A Family of Efficient Large Language Models Natively Trained for Local Deployment
- Authors: Yixin Song, Zhenliang Xue, Dongliang Wei, Feiyang Chen, Jianxiang Gao, Junchen Liu, Hangyu Liang, Guangshuo Qin, Chengrong Tian, Bo Wen, Longyu Zhao, Xinrui Zheng, Zeyu Mi, Haibo Chen,
- Abstract summary: SmallThinker is a family of large language models (LLMs) designed for local devices.<n>We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks.<n>We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs.
- Score: 5.141876811512978
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While frontier large language models (LLMs) continue to push capability boundaries, their deployment remains confined to GPU-powered cloud infrastructure. We challenge this paradigm with SmallThinker, a family of LLMs natively designed - not adapted - for the unique constraints of local devices: weak computational power, limited memory, and slow storage. Unlike traditional approaches that mainly compress existing models built for clouds, we architect SmallThinker from the ground up to thrive within these limitations. Our innovation lies in a deployment-aware architecture that transforms constraints into design principles. First, We introduce a two-level sparse structure combining fine-grained Mixture-of-Experts (MoE) with sparse feed-forward networks, drastically reducing computational demands without sacrificing model capacity. Second, to conquer the I/O bottleneck of slow storage, we design a pre-attention router that enables our co-designed inference engine to prefetch expert parameters from storage while computing attention, effectively hiding storage latency that would otherwise cripple on-device inference. Third, for memory efficiency, we utilize NoPE-RoPE hybrid sparse attention mechanism to slash KV cache requirements. We release SmallThinker-4B-A0.6B and SmallThinker-21B-A3B, which achieve state-of-the-art performance scores and even outperform larger LLMs. Remarkably, our co-designed system mostly eliminates the need for expensive GPU hardware: with Q4_0 quantization, both models exceed 20 tokens/s on ordinary consumer CPUs, while consuming only 1GB and 8GB of memory respectively. SmallThinker is publicly available at hf.co/PowerInfer/SmallThinker-4BA0.6B-Instruct and hf.co/PowerInfer/SmallThinker-21BA3B-Instruct.
Related papers
- D$^{2}$MoE: Dual Routing and Dynamic Scheduling for Efficient On-Device MoE-based LLM Serving [14.607254882119507]
Combination of experts (MoE) model is a sparse variant of large language models (LLMs)<n>Despite its benefits, MoE is still too expensive to deploy on resource-constrained edge devices.<n>We propose D$2$MoE, an algorithm-system co-design framework that matches diverse task requirements by dynamically allocating the most proper bit-width to each expert.
arXiv Detail & Related papers (2025-04-17T05:37:35Z) - A Universal Framework for Compressing Embeddings in CTR Prediction [68.27582084015044]
We introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings.<n>Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features.<n> Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance.
arXiv Detail & Related papers (2025-02-21T10:12:34Z) - MoE-Lightning: High-Throughput MoE Inference on Memory-constrained GPUs [55.95879347182669]
MoE architecture is renowned for its ability to increase model capacity without a proportional increase in inference cost.
MoE-Lightning introduces a novel CPU-GPU-I/O pipelining schedule, CGOPipe, with paged weights to achieve high resource utilization.
MoE-Lightning can achieve up to 10.3x higher throughput than state-of-the-art offloading-enabled LLM inference systems for Mixtral 8x7B on a single T4 GPU (16GB)
arXiv Detail & Related papers (2024-11-18T01:06:12Z) - InstInfer: In-Storage Attention Offloading for Cost-Effective Long-Context LLM Inference [10.115950753431528]
Large Language Models (LLMs) are a significant milestone in generative AI.
The increasing context length and batch size in offline LLM inference escalates the memory requirement of the key-value (KV) cache.
Several cost-effective solutions leverage host memory or optimized to reduce storage costs for offline inference scenarios.
We propose InstInfer, which offloads the most performance-critical computation (i.e., attention in decoding phase) and data (i.e., KV cache) parts to Computational Storage Drives (CSDs)
InstInfer improves throughput for long-sequence inference by
arXiv Detail & Related papers (2024-09-08T06:06:44Z) - MEFT: Memory-Efficient Fine-Tuning through Sparse Adapter [40.616849959987555]
We introduce a novel mechanism that fine-tunes Large Language Models (LLMs) with adapters of larger size yet memory-efficient.
This is achieved by leveraging the inherent activation sparsity in the Feed-Forward Networks (FFNs) of LLMs.
We employ a Mixture of Experts (MoE)-like architecture to mitigate unnecessary CPU computations and reduce the communication volume between the GPU and CPU.
arXiv Detail & Related papers (2024-06-07T14:49:22Z) - AI and Memory Wall [81.06494558184049]
We show how memory bandwidth can become the dominant bottleneck for decoder models.
We argue for a redesign in model architecture, training, and deployment strategies to overcome this memory limitation.
arXiv Detail & Related papers (2024-03-21T04:31:59Z) - Flash-LLM: Enabling Cost-Effective and Highly-Efficient Large Generative
Model Inference with Unstructured Sparsity [12.663030430488922]
We propose Flash-LLM for enabling low-cost and highly-efficient large generative model inference on high-performance Cores.
At SpMM kernel level, Flash-LLM significantly outperforms the state-of-the-art library, i.e., Sputnik and SparTA by an average of 2.9x and 1.5x, respectively.
arXiv Detail & Related papers (2023-09-19T03:20:02Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
Deep neural networks (DNNs) come with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage.
We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation.
We show that SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
arXiv Detail & Related papers (2021-01-04T18:54:07Z) - GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
Efficient Inference [1.6534387701595552]
We present GOBO, a model quantization technique that compresses the vast majority (typically 99.9%) of the 32-bit floating-point parameters of state-of-the-art BERT models.
Unlike other quantization methods, GOBO does not require fine-tuning nor retraining to compensate for the quantization error.
GOBO architecture maintains most of the weights in 3b even during computation.
arXiv Detail & Related papers (2020-05-08T03:59:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.