論文の概要: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
- arxiv url: http://arxiv.org/abs/2507.21004v2
- Date: Thu, 31 Jul 2025 00:08:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 13:02:07.688888
- Title: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
- Title(参考訳): 合成関数ネットワーク: 解釈性を備えたディープニューラルネットワークの高性能代替品
- Authors: Fang Li,
- Abstract要約: 本稿では,自然に解釈可能なモデルを構築する新しいフレームワークであるComposeal Function Networks (CFNs)を紹介する。
CFNは多様な構成パターンをサポートし、透明性を維持しながら複雑な機能相互作用を可能にする。
シンボル回帰から深層階層ネットワークを用いた画像分類まで,複数の領域にまたがるCFNの汎用性を実証する。
- 参考スコア(独自算出の注目度): 3.8126669848415666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
- Abstract(参考訳): Deep Neural Networks(DNN)は素晴らしいパフォーマンスを提供するが、そのブラックボックスの性質は、透明性を必要とする高い領域へのデプロイメントを制限する。
構成関数ネットワーク(CFN)は,基本的な数学的関数を明確な意味論で構成することにより,本質的に解釈可能なモデルを構築する新しいフレームワークである。
単純な付加的な構造に限定された既存の解釈可能なアプローチとは異なり、CFNは、透過性を維持しながら複雑な機能相互作用を可能にする、さまざまな構成パターン(シーケンシャル、並列、条件)をサポートする。
重要な革新は、CFNが完全に微分可能であり、標準勾配降下による効率的なトレーニングを可能にすることである。
シンボル回帰から深層階層ネットワークを用いた画像分類まで,複数の領域にまたがるCFNの汎用性を実証する。
実験により、CFNはブラックボックスモデル(CIFAR-10では96.24%の精度)と競合し、Explainable Boosting Machinesのような最先端の解釈可能なモデルよりも優れた性能を示した。
階層的表現性とディープラーニングの効率的なトレーニングと、明確に定義された数学的関数の本質的な解釈可能性を組み合わせることで、CFNは性能と説明可能性の両方が最重要となるアプリケーションのための強力なフレームワークを提供する。
関連論文リスト
- Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
リカレントニューラルネットワーク(RNN)はシーケンスモデリングタスクの中心であるが、その高い計算複雑性はスケーラビリティとリアルタイムデプロイメントの課題を引き起こす。
本稿では,RNNを部分的に順序付けられた集合(命題)としてモデル化し,対応する依存格子を構成する新しいフレームワークを提案する。
既約ニューロンを同定することにより、格子ベースのプルーニングアルゴリズムは、冗長なニューロンを除去しながら、重要な接続を選択的に保持する。
論文 参考訳(メタデータ) (2025-02-23T10:11:38Z) - Learning Interpretable Differentiable Logic Networks [3.8064485653035987]
解釈可能な微分可能論理ネットワーク(DLN)を学習するための新しい手法を提案する。
我々はこれらのネットワークを、入力の双対化、二項論理演算、ニューロン間の接続を通じて、個々の成分の軟化と差別化によって訓練する。
20の分類タスクの実験結果は、従来のNNと同等かそれ以上の精度で、微分可能な論理ネットワークが達成可能であることを示している。
論文 参考訳(メタデータ) (2024-07-04T21:58:26Z) - An NMF-Based Building Block for Interpretable Neural Networks With
Continual Learning [0.8158530638728501]
既存の学習方法は、解釈可能性と予測性能のバランスをとるのに苦労することが多い。
我々のアプローチは、NMFに基づくビルディングブロックを使用することで、これらの2つの側面のバランスを改善することを目的としています。
論文 参考訳(メタデータ) (2023-11-20T02:00:33Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
レイヤワイドフィードバックフィードバック(LFP)は、ニューラルネットワークのような予測器のための新しいトレーニング原則である。
LFPはそれぞれの貢献に基づいて個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分と有害な部分の弱体化を両立させる手法である。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
最先端の手法は、大規模データセットの事前トレーニングによって、素晴らしいパフォーマンスを達成する。
本稿では,新しい視覚的セマンティックモジュールを導入することで,マルチモーダルアライメントのための効率的なフレームワークを提案する。
実験の結果、提案されたASH-Netsは競合する結果が得られることが示された。
論文 参考訳(メタデータ) (2023-08-18T10:40:25Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
我々は、畳み込み動的アライメントネットワーク(CoDA Nets)と呼ばれる新しいニューラルネットワークモデルを紹介する。
彼らの中核となるビルディングブロックは動的アライメントユニット(DAU)であり、タスク関連パターンに合わせて動的に計算された重みベクトルで入力を変換するように最適化されている。
CoDAネットは一連の入力依存線形変換を通じて分類予測をモデル化し、出力を個々の入力コントリビューションに線形分解することができる。
論文 参考訳(メタデータ) (2021-09-27T12:39:46Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - Smoother Network Tuning and Interpolation for Continuous-level Image
Processing [7.730087303035803]
フィルタ遷移ネットワーク(FTN)は、連続学習のための構造的にスムーズなモジュールである。
FTNは様々なタスクやネットワークをまたいでうまく一般化し、望ましくない副作用を少なくする。
FTNの安定学習のために,IDマッピングを用いた非線形ニューラルネットワーク層を提案する。
論文 参考訳(メタデータ) (2020-10-05T18:29:52Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
一般化能力を高めたCNN訓練を推進するための汎用的特徴学習機構を提案する。
DSNに部分的にインスパイアされた私たちは、ニューラルネットワークの中間層から微妙に設計されたサイドブランチをフォークしました。
カテゴリ認識タスクとインスタンス認識タスクの両方の実験により,提案手法の大幅な改善が示された。
論文 参考訳(メタデータ) (2020-03-24T09:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。