Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
- URL: http://arxiv.org/abs/2507.21004v2
- Date: Thu, 31 Jul 2025 00:08:48 GMT
- Title: Compositional Function Networks: A High-Performance Alternative to Deep Neural Networks with Built-in Interpretability
- Authors: Fang Li,
- Abstract summary: We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models.<n>CFNs support diverse compositional patterns, enabling complex feature interactions while maintaining transparency.<n>We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks.
- Score: 3.8126669848415666
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) deliver impressive performance but their black-box nature limits deployment in high-stakes domains requiring transparency. We introduce Compositional Function Networks (CFNs), a novel framework that builds inherently interpretable models by composing elementary mathematical functions with clear semantics. Unlike existing interpretable approaches that are limited to simple additive structures, CFNs support diverse compositional patterns -- sequential, parallel, and conditional -- enabling complex feature interactions while maintaining transparency. A key innovation is that CFNs are fully differentiable, allowing efficient training through standard gradient descent. We demonstrate CFNs' versatility across multiple domains, from symbolic regression to image classification with deep hierarchical networks. Our empirical evaluation shows CFNs achieve competitive performance against black-box models (96.24% accuracy on CIFAR-10) while outperforming state-of-the-art interpretable models like Explainable Boosting Machines. By combining the hierarchical expressiveness and efficient training of deep learning with the intrinsic interpretability of well-defined mathematical functions, CFNs offer a powerful framework for applications where both performance and accountability are paramount.
Related papers
- Lattice-Based Pruning in Recurrent Neural Networks via Poset Modeling [0.0]
Recurrent neural networks (RNNs) are central to sequence modeling tasks, yet their high computational complexity poses challenges for scalability and real-time deployment.<n>We introduce a novel framework that models RNNs as partially ordered sets (posets) and constructs corresponding dependency lattices.<n>By identifying meet irreducible neurons, our lattice-based pruning algorithm selectively retains critical connections while eliminating redundant ones.
arXiv Detail & Related papers (2025-02-23T10:11:38Z) - Learning Interpretable Differentiable Logic Networks [3.8064485653035987]
We introduce a novel method for learning interpretable differentiable logic networks (DLNs)
We train these networks by softening and differentiating their discrete components, through binarization of inputs, binary logic operations, and connections between neurons.
Experimental results on twenty classification tasks indicate that differentiable logic networks can achieve accuracies comparable to or exceeding that of traditional NNs.
arXiv Detail & Related papers (2024-07-04T21:58:26Z) - Manipulating Feature Visualizations with Gradient Slingshots [53.94925202421929]
Feature Visualization (FV) is a widely used technique for interpreting the concepts learned by Deep Neural Networks (DNNs)<n>We introduce a novel method, Gradient Slingshots, that enables manipulation of FV without modifying the model architecture or significantly degrading its performance.
arXiv Detail & Related papers (2024-01-11T18:57:17Z) - An NMF-Based Building Block for Interpretable Neural Networks With
Continual Learning [0.8158530638728501]
Existing learning methods often struggle to balance interpretability and predictive performance.
Our approach aims to strike a better balance between these two aspects through the use of a building block based on NMF.
arXiv Detail & Related papers (2023-11-20T02:00:33Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - Artificial-Spiking Hierarchical Networks for Vision-Language
Representation Learning [16.902924543372713]
State-of-the-art methods achieve impressive performance by pre-training on large-scale datasets.
We propose an efficient framework for multimodal alignment by introducing a novel visual semantic module.
Experiments show that the proposed ASH-Nets achieve competitive results.
arXiv Detail & Related papers (2023-08-18T10:40:25Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
We present Neural Interpreters, an architecture that factorizes inference in a self-attention network as a system of modules.
inputs to the model are routed through a sequence of functions in a way that is end-to-end learned.
We show that Neural Interpreters perform on par with the vision transformer using fewer parameters, while being transferrable to a new task in a sample efficient manner.
arXiv Detail & Related papers (2021-10-12T23:22:45Z) - Optimising for Interpretability: Convolutional Dynamic Alignment
Networks [108.83345790813445]
We introduce a new family of neural network models called Convolutional Dynamic Alignment Networks (CoDA Nets)
Their core building blocks are Dynamic Alignment Units (DAUs), which are optimised to transform their inputs with dynamically computed weight vectors that align with task-relevant patterns.
CoDA Nets model the classification prediction through a series of input-dependent linear transformations, allowing for linear decomposition of the output into individual input contributions.
arXiv Detail & Related papers (2021-09-27T12:39:46Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
We present a deep interleaved network (DIN) that learns how information at different states should be combined for high-quality (HQ) images reconstruction.
In this paper, we propose asymmetric co-attention (AsyCA) which is attached at each interleaved node to model the feature dependencies.
Our presented DIN can be trained end-to-end and applied to various image restoration tasks.
arXiv Detail & Related papers (2020-10-29T15:32:00Z) - Smoother Network Tuning and Interpolation for Continuous-level Image
Processing [7.730087303035803]
Filter Transition Network (FTN) is a structurally smoother module for continuous-level learning.
FTN generalizes well across various tasks and networks and cause fewer undesirable side effects.
For stable learning of FTN, we additionally propose a method to non-linear neural network layers with identity mappings.
arXiv Detail & Related papers (2020-10-05T18:29:52Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.