Boost Self-Supervised Dataset Distillation via Parameterization, Predefined Augmentation, and Approximation
- URL: http://arxiv.org/abs/2507.21455v2
- Date: Tue, 05 Aug 2025 06:51:05 GMT
- Title: Boost Self-Supervised Dataset Distillation via Parameterization, Predefined Augmentation, and Approximation
- Authors: Sheng-Feng Yu, Jia-Jiun Yao, Wei-Chen Chiu,
- Abstract summary: We propose a technique to distill images and their self-supervisedly trained representations into a distilled set.<n>This procedure effectively extracts rich information from real datasets, yielding the distilled sets with enhanced cross-architecture generalizability.<n>In particular, we introduce an innovative parameterization upon images and representations via distinct low-dimensional bases.
- Score: 19.552569546864913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although larger datasets are crucial for training large deep models, the rapid growth of dataset size has brought a significant challenge in terms of considerable training costs, which even results in prohibitive computational expenses. Dataset Distillation becomes a popular technique recently to reduce the dataset size via learning a highly compact set of representative exemplars, where the model trained with these exemplars ideally should have comparable performance with respect to the one trained with the full dataset. While most of existing works upon dataset distillation focus on supervised datasets, we instead aim to distill images and their self-supervisedly trained representations into a distilled set. This procedure, named as Self-Supervised Dataset Distillation, effectively extracts rich information from real datasets, yielding the distilled sets with enhanced cross-architecture generalizability. Particularly, in order to preserve the key characteristics of original dataset more faithfully and compactly, several novel techniques are proposed: 1) we introduce an innovative parameterization upon images and representations via distinct low-dimensional bases, where the base selection for parameterization is experimentally shown to play a crucial role; 2) we tackle the instability induced by the randomness of data augmentation -- a key component in self-supervised learning but being underestimated in the prior work of self-supervised dataset distillation -- by utilizing predetermined augmentations; 3) we further leverage a lightweight network to model the connections among the representations of augmented views from the same image, leading to more compact pairs of distillation. Extensive experiments conducted on various datasets validate the superiority of our approach in terms of distillation efficiency, cross-architecture generalization, and transfer learning performance.
Related papers
- Diversity-Driven Generative Dataset Distillation Based on Diffusion Model with Self-Adaptive Memory [33.38900857290244]
We present a diversity-driven generative dataset distillation method based on a diffusion model to solve this problem.<n>We introduce self-adaptive memory to align the distribution between distilled and real datasets, assessing the representativeness.<n>Our method outperforms existing state-of-the-art methods in most situations.
arXiv Detail & Related papers (2025-05-26T03:48:56Z) - Dataset Distillation via Committee Voting [21.018818924580877]
We introduce $bf C$ommittee $bf V$oting for $bf D$ataset $bf D$istillation (CV-DD)<n>CV-DD is a novel approach that leverages the collective wisdom of multiple models or experts to create high-quality distilled datasets.
arXiv Detail & Related papers (2025-01-13T18:59:48Z) - Generative Dataset Distillation Based on Self-knowledge Distillation [49.20086587208214]
We present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits.<n>Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data.<n>Our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
arXiv Detail & Related papers (2025-01-08T00:43:31Z) - Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples.
An autoencoder with self-attention layers and optimal transport refines distributional consistency.
Results show comparable performance, demonstrating the model's potential to augment training data effectively.
arXiv Detail & Related papers (2024-06-25T02:59:02Z) - ATOM: Attention Mixer for Efficient Dataset Distillation [17.370852204228253]
We propose a module to efficiently distill large datasets using a mixture of channel and spatial-wise attention.<n>By integrating both types of attention, our ATOM module demonstrates superior performance across various computer vision datasets.
arXiv Detail & Related papers (2024-05-02T15:15:01Z) - One Category One Prompt: Dataset Distillation using Diffusion Models [22.512552596310176]
We introduce Diffusion Models (D3M) as a novel paradigm for dataset distillation, leveraging recent advancements in generative text-to-image foundation models.
Our approach utilizes textual inversion, a technique for fine-tuning text-to-image generative models, to create concise and informative representations for large datasets.
arXiv Detail & Related papers (2024-03-11T20:23:59Z) - Importance-Aware Adaptive Dataset Distillation [53.79746115426363]
Development of deep learning models is enabled by the availability of large-scale datasets.
dataset distillation aims to synthesize a compact dataset that retains the essential information from the large original dataset.
We propose an importance-aware adaptive dataset distillation (IADD) method that can improve distillation performance.
arXiv Detail & Related papers (2024-01-29T03:29:39Z) - AST: Effective Dataset Distillation through Alignment with Smooth and
High-Quality Expert Trajectories [18.266786462036553]
We propose an effective DD framework named AST, standing for Alignment with Smooth and high-quality expert Trajectories.
We conduct extensive experiments on datasets of different scales, sizes, and resolutions.
arXiv Detail & Related papers (2023-10-16T16:13:53Z) - Data Distillation Can Be Like Vodka: Distilling More Times For Better
Quality [78.6359306550245]
We argue that using just one synthetic subset for distillation will not yield optimal generalization performance.
PDD synthesizes multiple small sets of synthetic images, each conditioned on the previous sets, and trains the model on the cumulative union of these subsets.
Our experiments show that PDD can effectively improve the performance of existing dataset distillation methods by up to 4.3%.
arXiv Detail & Related papers (2023-10-10T20:04:44Z) - Generalizing Dataset Distillation via Deep Generative Prior [75.9031209877651]
We propose to distill an entire dataset's knowledge into a few synthetic images.
The idea is to synthesize a small number of synthetic data points that, when given to a learning algorithm as training data, result in a model approximating one trained on the original data.
We present a new optimization algorithm that distills a large number of images into a few intermediate feature vectors in the generative model's latent space.
arXiv Detail & Related papers (2023-05-02T17:59:31Z) - Dataset Distillation by Matching Training Trajectories [75.9031209877651]
We propose a new formulation that optimize our distilled data to guide networks to a similar state as those trained on real data.
Given a network, we train it for several iterations on our distilled data and optimize the distilled data with respect to the distance between the synthetically trained parameters and the parameters trained on real data.
Our method handily outperforms existing methods and also allows us to distill higher-resolution visual data.
arXiv Detail & Related papers (2022-03-22T17:58:59Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.