Exploring the Link Between Bayesian Inference and Embodied Intelligence: Toward Open Physical-World Embodied AI Systems
- URL: http://arxiv.org/abs/2507.21589v1
- Date: Tue, 29 Jul 2025 08:43:16 GMT
- Title: Exploring the Link Between Bayesian Inference and Embodied Intelligence: Toward Open Physical-World Embodied AI Systems
- Authors: Bin Liu,
- Abstract summary: Embodied intelligence posits that cognitive capabilities emerge from - and are shaped by - an agent's real-time sensorimotor interactions with its environment.<n>Embodied intelligence systems remain largely confined to closed-physical-world environments.
- Score: 3.498694457257263
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Embodied intelligence posits that cognitive capabilities fundamentally emerge from - and are shaped by - an agent's real-time sensorimotor interactions with its environment. Such adaptive behavior inherently requires continuous inference under uncertainty. Bayesian statistics offers a principled probabilistic framework to address this challenge by representing knowledge as probability distributions and updating beliefs in response to new evidence. The core computational processes underlying embodied intelligence - including perception, action selection, learning, and even higher-level cognition - can be effectively understood and modeled as forms of Bayesian inference. Despite the deep conceptual connection between Bayesian statistics and embodied intelligence, Bayesian principles have not been widely or explicitly applied in today's embodied intelligence systems. In this work, we examine both Bayesian and contemporary embodied intelligence approaches through two fundamental lenses: search and learning - the two central themes in modern AI, as highlighted in Rich Sutton's influential essay "The Bitter Lesson". This analysis sheds light on why Bayesian inference has not played a central role in the development of modern embodied intelligence. At the same time, it reveals that current embodied intelligence systems remain largely confined to closed-physical-world environments, and highlights the potential for Bayesian methods to play a key role in extending these systems toward truly open physical-world embodied intelligence.
Related papers
- Beyond Statistical Learning: Exact Learning Is Essential for General Intelligence [59.07578850674114]
Sound deductive reasoning is an indisputably desirable aspect of general intelligence.<n>It is well-documented that even the most advanced frontier systems regularly and consistently falter on easily-solvable reasoning tasks.<n>We argue that their unsound behavior is a consequence of the statistical learning approach powering their development.
arXiv Detail & Related papers (2025-06-30T14:37:50Z) - Continuum-Interaction-Driven Intelligence: Human-Aligned Neural Architecture via Crystallized Reasoning and Fluid Generation [1.5800607910450124]
Current AI systems face challenges including hallucination, unpredictability, and misalignment with human decision-making.<n>This study proposes a dual-channel intelligent architecture that integrates probabilistic generation (LLMs) with white-box procedural reasoning (chain-of-thought) to construct interpretable, continuously learnable, and human-aligned AI systems.
arXiv Detail & Related papers (2025-04-12T18:15:49Z) - Advances and Challenges in Foundation Agents: From Brain-Inspired Intelligence to Evolutionary, Collaborative, and Safe Systems [132.77459963706437]
This book provides a comprehensive overview, framing intelligent agents within modular, brain-inspired architectures.<n>It explores self-enhancement and adaptive evolution mechanisms, exploring how agents autonomously refine their capabilities.<n>It also examines the collective intelligence emerging from agent interactions, cooperation, and societal structures.
arXiv Detail & Related papers (2025-03-31T18:00:29Z) - Probabilistic Artificial Intelligence [42.59649764999974]
Key aspect of intelligence is to not only make predictions, but reason about the uncertainty in these predictions, and to consider this uncertainty when making decisions.<n>We discuss the differentiation between "epistemic" uncertainty due to lack of data and "aleatoric" uncertainty, which is irreducible and stems, e.g., from noisy observations and outcomes.
arXiv Detail & Related papers (2025-02-07T14:29:07Z) - Visual Agents as Fast and Slow Thinkers [88.1404921693082]
We introduce FaST, which incorporates the Fast and Slow Thinking mechanism into visual agents.<n>FaST employs a switch adapter to dynamically select between System 1/2 modes.<n>It tackles uncertain and unseen objects by adjusting model confidence and integrating new contextual data.
arXiv Detail & Related papers (2024-08-16T17:44:02Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Bayes in the age of intelligent machines [11.613278345297399]
We argue that Bayesian models of cognition and artificial neural networks lie at different levels of analysis and are complementary modeling approaches.
We also argue that the same perspective can be applied to intelligent machines, where a Bayesian approach may be uniquely valuable.
arXiv Detail & Related papers (2023-11-16T21:39:54Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.<n>PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Designing Ecosystems of Intelligence from First Principles [34.429740648284685]
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond)
Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants.
This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence.
arXiv Detail & Related papers (2022-12-02T18:24:06Z) - On the Principles of Parsimony and Self-Consistency for the Emergence of
Intelligence [10.951424145477633]
We propose a theoretical framework that sheds light on understanding deep networks within a bigger picture of Intelligence in general.
We introduce two fundamental principles, Parsimony and Self-consistency, that we believe to be cornerstones for the emergence of Intelligence.
arXiv Detail & Related papers (2022-07-11T05:06:08Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.