GDAIP: A Graph-Based Domain Adaptive Framework for Individual Brain Parcellation
- URL: http://arxiv.org/abs/2507.21727v1
- Date: Tue, 29 Jul 2025 12:04:09 GMT
- Title: GDAIP: A Graph-Based Domain Adaptive Framework for Individual Brain Parcellation
- Authors: Jianfei Zhu, Haiqi Zhu, Shaohui Liu, Feng Jiang, Baichun Wei, Chunzhi Yi,
- Abstract summary: Graph Domain Adaptation for Individual Parcellation (GDAIP) is a novel framework that integrates Graph Attention Networks (GAT) with Minimax Entropy (MME)-based domain adaptation.<n>We construct cross-dataset brain graphs at both the group and individual levels.
- Score: 14.297591748463907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent deep learning approaches have shown promise in learning such individual brain parcellations from functional magnetic resonance imaging (fMRI). However, most existing methods assume consistent data distributions across domains and struggle with domain shifts inherent to real-world cross-dataset scenarios. To address this challenge, we proposed Graph Domain Adaptation for Individual Parcellation (GDAIP), a novel framework that integrates Graph Attention Networks (GAT) with Minimax Entropy (MME)-based domain adaptation. We construct cross-dataset brain graphs at both the group and individual levels. By leveraging semi-supervised training and adversarial optimization of the prediction entropy on unlabeled vertices from target brain graph, the reference atlas is adapted from the group-level brain graph to the individual brain graph, enabling individual parcellation under cross-dataset settings. We evaluated our method using parcellation visualization, Dice coefficient, and functional homogeneity. Experimental results demonstrate that GDAIP produces individual parcellations with topologically plausible boundaries, strong cross-session consistency, and ability of reflecting functional organization.
Related papers
- Brain Network Classification Based on Graph Contrastive Learning and Graph Transformer [0.6906005491572401]
This paper proposes a novel model named PHGCL-DDGformer that integrates graph contrastive learning with graph transformers.<n> Experimental results on real-world datasets demonstrate that the PHGCL-DDGformer model outperforms existing state-of-the-art approaches in brain network classification tasks.
arXiv Detail & Related papers (2025-04-01T13:26:03Z) - Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
We present a novel graph Transformer generative adversarial network (GTGAN) to learn effective graph node relations.
The proposed graph Transformer encoder combines graph convolutions and self-attentions in a Transformer to model both local and global interactions.
We also propose a novel self-guided pre-training method for graph representation learning.
arXiv Detail & Related papers (2024-01-15T14:36:38Z) - Mixed Graph Contrastive Network for Semi-Supervised Node Classification [63.924129159538076]
We propose a novel graph contrastive learning method, termed Mixed Graph Contrastive Network (MGCN)<n>In our method, we improve the discriminative capability of the latent embeddings by an unperturbed augmentation strategy and a correlation reduction mechanism.<n>By combining the two settings, we extract rich supervision information from both the abundant nodes and the rare yet valuable labeled nodes for discriminative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Dynamic Adaptive Spatio-temporal Graph Convolution for fMRI Modelling [0.0]
We propose a dynamic adaptivetemporal graph convolution (DASTGCN) model to overcome the shortcomings of pre-defined static correlation-based graph structures.
The proposed approach allows end-to-end inference of dynamic connections between brain regions via layer-wise graph structure learning module.
We evaluate our pipeline on the UKBiobank for age and gender classification tasks from resting-state functional scans.
arXiv Detail & Related papers (2021-09-26T07:19:47Z) - Adapt Everywhere: Unsupervised Adaptation of Point-Clouds and Entropy
Minimisation for Multi-modal Cardiac Image Segmentation [10.417009344120917]
We present a novel UDA method for multi-modal cardiac image segmentation.
The proposed method is based on adversarial learning and adapts network features between source and target domain in different spaces.
We validated our method on two cardiac datasets by adapting from the annotated source domain to the unannotated target domain.
arXiv Detail & Related papers (2021-03-15T08:59:44Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z) - Adversarial Graph Representation Adaptation for Cross-Domain Facial
Expression Recognition [86.25926461936412]
We propose a novel Adrialversa Graph Representation Adaptation (AGRA) framework that unifies graph representation propagation with adversarial learning for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair experiments on several popular benchmarks and show that the proposed AGRA framework achieves superior performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T13:27:24Z) - Graphs, Entities, and Step Mixture [11.162937043309478]
We propose a new graph neural network that considers both edge-based neighborhood relationships and node-based entity features.
With intensive experiments, we show that the proposed GESM achieves state-of-the-art or comparable performances on eight benchmark graph datasets.
arXiv Detail & Related papers (2020-05-18T06:57:02Z) - Graph Domain Adaptation for Alignment-Invariant Brain Surface
Segmentation [9.430867304159179]
Recent developments have enabled learning surface data directly across multiple brain surfaces via graph convolutions on cortical data.
Adversarial training is widely used for domain adaptation to improve the segmentation performance across domains.
We demonstrate an 8% mean improvement over a non-adversarial training strategy applied on multiple target domains extracted from MindBoggle.
arXiv Detail & Related papers (2020-03-31T19:43:59Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
We propose a novel concept, Graphical Mutual Information (GMI), to measure the correlation between input graphs and high-level hidden representations.
We develop an unsupervised learning model trained by maximizing GMI between the input and output of a graph neural encoder.
arXiv Detail & Related papers (2020-02-04T08:33:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.