論文の概要: SLA-Centric Automated Algorithm Selection Framework for Cloud Environments
- arxiv url: http://arxiv.org/abs/2507.21963v1
- Date: Tue, 29 Jul 2025 16:12:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:56.655877
- Title: SLA-Centric Automated Algorithm Selection Framework for Cloud Environments
- Title(参考訳): SLA中心のクラウド環境自動アルゴリズム選択フレームワーク
- Authors: Siana Rizwan, Tasnim Ahmed, Salimur Choudhury,
- Abstract要約: クラウドコンピューティングは、コンシューマとクラウドサービスプロバイダ(CSP)の間のSLA(Service-Level Agreements)によって規制されるオンデマンドリソースアクセスを提供する。
本稿では、リソース制約のあるクラウド環境における最適化問題に対するSLA対応自動アルゴリズム選択フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cloud computing offers on-demand resource access, regulated by Service-Level Agreements (SLAs) between consumers and Cloud Service Providers (CSPs). SLA violations can impact efficiency and CSP profitability. In this work, we propose an SLA-aware automated algorithm-selection framework for combinatorial optimization problems in resource-constrained cloud environments. The framework uses an ensemble of machine learning models to predict performance and rank algorithm-hardware pairs based on SLA constraints. We also apply our framework to the 0-1 knapsack problem. We curate a dataset comprising instance specific features along with memory usage, runtime, and optimality gap for 6 algorithms. As an empirical benchmark, we evaluate the framework on both classification and regression tasks. Our ablation study explores the impact of hyperparameters, learning approaches, and large language models effectiveness in regression, and SHAP-based interpretability.
- Abstract(参考訳): クラウドコンピューティングは、コンシューマとクラウドサービスプロバイダ(CSP)の間のSLA(Service-Level Agreements)によって規制されるオンデマンドリソースアクセスを提供する。
SLA違反は効率とCSPの収益性に影響を与える可能性がある。
本研究では,資源制約のあるクラウド環境における組合せ最適化問題に対するSLA対応自動アルゴリズム選択フレームワークを提案する。
このフレームワークは、機械学習モデルのアンサンブルを使用してパフォーマンスを予測し、SLA制約に基づいてアルゴリズムとハードウェアのペアをランク付けする。
また、このフレームワークを0-1knapsack問題に適用する。
6つのアルゴリズムに対して、インスタンス固有の機能とメモリ使用量、実行時間、最適性ギャップを含むデータセットをキュレートする。
実験的なベンチマークとして,分類作業と回帰作業の両方のフレームワークを評価する。
我々は,ハイパーパラメータ,学習アプローチ,回帰における大規模言語モデルの有効性,およびSHAPに基づく解釈可能性の影響について検討した。
関連論文リスト
- PointLoRA: Low-Rank Adaptation with Token Selection for Point Cloud Learning [54.99373314906667]
ポイントクラウドのための自己教師付き表現学習は、様々なタスクで事前訓練されたモデルパフォーマンスを改善する効果を実証した。
事前訓練されたモデルは複雑さが増すにつれて、下流のアプリケーションに完全に微調整を施すには、かなりの計算資源とストレージ資源が必要である。
そこで我々は,低ランク適応(LoRA)とマルチスケールトークン選択を併用した簡易かつ効果的なPointLoRAを提案する。
論文 参考訳(メタデータ) (2025-04-22T16:41:21Z) - Efficient Split Federated Learning for Large Language Models over Communication Networks [45.02252893286613]
分散方式で訓練済みの大規模言語モデル(LLM)を微調整することで、リソース制約のあるエッジネットワークにおいて大きな課題が生じる。
本稿では,分割フェデレーション学習とパラメータ効率のよい微調整技術を統合する新しいフレームワークであるSflLLMを提案する。
モデル分割とローランク適応(LoRA)を活用することにより、SflLLMはエッジデバイスの計算負担を軽減する。
論文 参考訳(メタデータ) (2025-04-20T16:16:54Z) - Streaming Looking Ahead with Token-level Self-reward [50.699168440048716]
本稿では,トークンレベルの自己回帰モデリング(TRM)機能を備えたポリシーモデルを提案する。
さらに,検索効率を向上し,並列化を向上するストリーミング・ルック・アヘッド (SLA) アルゴリズムを提案する。
SLAとDPOなどの強化微調整技術を組み合わせると、全体の勝利率は89.4%となる。
論文 参考訳(メタデータ) (2025-02-24T22:35:53Z) - Split Federated Learning Over Heterogeneous Edge Devices: Algorithm and Optimization [7.013344179232109]
Split Learning(SL)は、リソース制約のあるデバイスが生データを共有せずにモデルをトレーニングできるようにする、有望なコラボレーティブ機械学習アプローチである。
現在のSLアルゴリズムは、トレーニング効率の限界に直面し、長時間のレイテンシに悩まされている。
本稿では、リソース制約のあるクライアントが、パーソナライズされたクライアントサイドモデルを並列にトレーニングできる、異種分散フェデレーションラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-21T07:46:01Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - A Deep Recurrent-Reinforcement Learning Method for Intelligent AutoScaling of Serverless Functions [18.36339203254509]
Fは軽量で関数ベースのクラウド実行モデルを導入し、IoTエッジデータ処理や異常検出など、さまざまなアプリケーションでその妥当性を見出す。
論文 参考訳(メタデータ) (2023-08-11T04:41:19Z) - Online Learning for Orchestration of Inference in Multi-User
End-Edge-Cloud Networks [3.6076391721440633]
ディープラーニングのためのコラボレーション型のエッジクラウドコンピューティングは、さまざまなパフォーマンスと効率を提供する。
本稿では、最適オフロードポリシーを学習する強化学習に基づく計算オフロードソリューションを提案する。
我々のソリューションは、平均応答時間において、0.9%未満の精度で、最先端技術と比較して35%のスピードアップを提供する。
論文 参考訳(メタデータ) (2022-02-21T21:41:29Z) - Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of
Partitioned Edge Learning [73.82875010696849]
機械学習アルゴリズムは、人工知能(AI)モデルをトレーニングするために、ネットワークエッジにデプロイされる。
本稿では,パラメータ(計算負荷)割り当てと帯域幅割り当ての新しい共同設計に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-10T05:52:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。