See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs
- URL: http://arxiv.org/abs/2507.22003v2
- Date: Wed, 30 Jul 2025 04:41:52 GMT
- Title: See Different, Think Better: Visual Variations Mitigating Hallucinations in LVLMs
- Authors: Ziyun Dai, Xiaoqiang Li, Shaohua Zhang, Yuanchen Wu, Jide Li,
- Abstract summary: This paper presents ViHallu, a Vision-Centric Hallucination mitigation framework.<n>ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure.<n>Experiments show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies.
- Score: 7.964168958699652
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in visual understanding and multimodal reasoning. However, LVLMs frequently exhibit hallucination phenomena, manifesting as the generated textual responses that demonstrate inconsistencies with the provided visual content. Existing hallucination mitigation methods are predominantly text-centric, the challenges of visual-semantic alignment significantly limit their effectiveness, especially when confronted with fine-grained visual understanding scenarios. To this end, this paper presents ViHallu, a Vision-Centric Hallucination mitigation framework that enhances visual-semantic alignment through Visual Variation Image Generation and Visual Instruction Construction. ViHallu introduces visual variation images with controllable visual alterations while maintaining the overall image structure. These images, combined with carefully constructed visual instructions, enable LVLMs to better understand fine-grained visual content through fine-tuning, allowing models to more precisely capture the correspondence between visual content and text, thereby enhancing visual-semantic alignment. Extensive experiments on multiple benchmarks show that ViHallu effectively enhances models' fine-grained visual understanding while significantly reducing hallucination tendencies. Furthermore, we release ViHallu-Instruction, a visual instruction dataset specifically designed for hallucination mitigation and visual-semantic alignment. Code is available at https://github.com/oliviadzy/ViHallu.
Related papers
- SAVER: Mitigating Hallucinations in Large Vision-Language Models via Style-Aware Visual Early Revision [59.61988843996952]
Style-Aware Visual Early Revision SAVER is a novel mechanism that dynamically adjusts LVLMs' final outputs based on the token-level visual attention patterns.<n>We show that SAVER achieves state-of-the-art performance in hallucination mitigation across various models, datasets, and tasks.
arXiv Detail & Related papers (2025-08-05T07:41:25Z) - ViCrit: A Verifiable Reinforcement Learning Proxy Task for Visual Perception in VLMs [98.27348724529257]
We introduce ViCrit (Visual Caption Hallucination Critic), an RL proxy task that trains VLMs to localize a subtle, synthetic visual hallucination injected into paragraphs of human-written image captions.<n>Models trained with the ViCrit Task exhibit substantial gains across a variety of vision-language models benchmarks.
arXiv Detail & Related papers (2025-06-11T19:16:54Z) - Through the Magnifying Glass: Adaptive Perception Magnification for Hallucination-Free VLM Decoding [12.82009632507056]
Existing vision-language models (VLMs) often suffer from visual hallucination, where the generated responses contain inaccuracies that are not grounded in the visual input.<n>We propose the Perception Magnifier (PM), a novel visual decoding method that iteratively isolates relevant visual tokens based on attention and magnifies the corresponding regions, spurring the model to concentrate on fine-grained visual details during decoding.
arXiv Detail & Related papers (2025-03-13T09:14:11Z) - Cracking the Code of Hallucination in LVLMs with Vision-aware Head Divergence [69.86946427928511]
We investigate the internal mechanisms driving hallucination in large vision-language models (LVLMs)<n>We introduce Vision-aware Head Divergence (VHD), a metric that quantifies the sensitivity of attention head outputs to visual context.<n>We propose Vision-aware Head Reinforcement (VHR), a training-free approach to mitigate hallucination by enhancing the role of vision-aware attention heads.
arXiv Detail & Related papers (2024-12-18T15:29:30Z) - VaLiD: Mitigating the Hallucination of Large Vision Language Models by Visual Layer Fusion Contrastive Decoding [38.23310445372371]
Large Vision-Language Models (LVLMs) have demonstrated remarkable capabilities in multimodal task reasoning.<n>They often generate responses that appear plausible yet do not accurately reflect the visual content, a phenomenon known as hallucination.<n>Recent approaches have introduced training-free methods to mitigate hallucinations by adjusting the decoding strategy during the inference stage.<n>We propose a novel hallucination-mitigation method from the visual encoding perspective: textbfVisutextbfal textbfLayer Fustextbfion Contrastive textbfD
arXiv Detail & Related papers (2024-11-24T13:42:02Z) - CATCH: Complementary Adaptive Token-level Contrastive Decoding to Mitigate Hallucinations in LVLMs [74.36850397755572]
CATCH addresses issues related to visual defects that cause diminished fine-grained feature perception and cumulative hallucinations in open-ended scenarios.
It is applicable to various visual question-answering tasks without requiring any specific data or prior knowledge, and generalizes robustly to new tasks without additional training.
arXiv Detail & Related papers (2024-11-19T18:27:31Z) - HELPD: Mitigating Hallucination of LVLMs by Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding [36.360171373963716]
Large Vision-Language Models (LVLMs) have shown remarkable performance on many visual-language tasks.
These models still suffer from multimodal hallucination, which means the generation of objects or content that violates the images.
We propose Hierarchical Feedback Learning with Vision-enhanced Penalty Decoding (HELPD) to address this issue.
arXiv Detail & Related papers (2024-09-30T15:52:05Z) - Visual Description Grounding Reduces Hallucinations and Boosts Reasoning in LVLMs [52.497823009176074]
Large Vision-Language Models (LVLMs) often produce responses that misalign with factual information, a phenomenon known as hallucinations.<n>We introduce Visual Description Grounded Decoding (VDGD), a training-free method designed to enhance visual perception and improve reasoning capabilities in LVLMs.
arXiv Detail & Related papers (2024-05-24T16:21:59Z) - Alleviating Hallucinations in Large Vision-Language Models through Hallucination-Induced Optimization [123.54980913741828]
Large Visual Language Models (LVLMs) have demonstrated exceptional abilities in understanding multimodal data.<n>They invariably suffer from hallucinations, leading to a disconnect between the generated text and the corresponding images.<n>Almost all current visual contrastive decoding methods attempt to mitigate these hallucinations by introducing visual uncertainty information.<n>However, they struggle to precisely induce the hallucinatory tokens, which severely limits their effectiveness in mitigating hallucinations.
arXiv Detail & Related papers (2024-05-24T08:46:31Z) - Pensieve: Retrospect-then-Compare Mitigates Visual Hallucination [14.25488878224697]
We propose Pensieve, a training-free method that leverages the analogous visual hallucinations, which are induced by images sharing common semantic and appearance characteristics.
Pensieve mitigates the effects of addressing errors from both the visual and textual branches by adaptively scaling the subtracted scores.
arXiv Detail & Related papers (2024-03-21T13:49:42Z) - Mitigating Object Hallucinations in Large Vision-Language Models through
Visual Contrastive Decoding [125.05295513481035]
We introduce Visual Contrastive Decoding (VCD), a simple and training-free method that contrasts output distributions derived from original and distorted visual inputs.
The proposed VCD effectively reduces the over-reliance on statistical bias and unimodal priors, two essential causes of object hallucinations.
Our experiments show that VCD, without either additional training or the usage of external tools, significantly mitigates the object hallucination issue across different LVLM families.
arXiv Detail & Related papers (2023-11-28T16:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.