論文の概要: Supervised Quantum Image Processing
- arxiv url: http://arxiv.org/abs/2507.22039v1
- Date: Tue, 29 Jul 2025 17:40:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-30 17:08:56.777118
- Title: Supervised Quantum Image Processing
- Title(参考訳): 量子画像処理
- Authors: Marco Parigi, Mehran Khosrojerdi, Filippo Caruso, Leonardo Banchi,
- Abstract要約: 量子画像処理 (QIP) は、量子情報科学と画像処理の間の分野である。
4つの異なる量子画像表現(QImR)の圧縮特性を比較し,検討する。
以上の結果から,量子カーネルの分類平均精度は同等だが,画像記憶に要するリソースは指数的に少ないことが示唆された。
- 参考スコア(独自算出の注目度): 1.0499611180329806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the era of big data and artificial intelligence, the increasing volume of data and the demand to solve more and more complex computational challenges are two driving forces for improving the efficiency of data storage, processing and analysis. Quantum image processing (QIP) is an interdisciplinary field between quantum information science and image processing, which has the potential to alleviate some of these challenges by leveraging the power of quantum computing. In this work, we compare and examine the compression properties of four different Quantum Image Representations (QImRs): namely, Tensor Network Representation (TNR), Flexible Representation of Quantum Image (FRQI), Novel Enhanced Quantum Representation NEQR, and Quantum Probability Image Encoding (QPIE). Our simulations show that FRQI performs a higher compression of image information than TNR, NEQR, and QPIE. Furthermore, we investigate the trade-off between accuracy and memory in binary classification problems, evaluating the performance of quantum kernels based on QImRs compared to the classical linear kernel. Our results indicate that quantum kernels provide comparable classification average accuracy but require exponentially fewer resources for image storage.
- Abstract(参考訳): ビッグデータと人工知能の時代において、データ量の増加と、より複雑な計算課題の解決を求める要求は、データストレージ、処理、分析の効率を改善するための2つの推進力である。
量子画像処理(Quantum Image Processing, QIP)は、量子情報科学と画像処理の学際的な分野であり、量子コンピューティングのパワーを活用してこれらの課題を緩和する可能性がある。
本研究では,4つの異なる量子画像表現(QImR)の圧縮特性,すなわちテンソルネットワーク表現(TNR),フレキシブル量子画像表現(FRQI),新しい量子表現NEQR,量子確率画像符号化(QPIE)を比較し,検討する。
シミュレーションにより、FRQIは、TNR、NEQR、QPIEよりも高い画像情報圧縮を行うことが示された。
さらに、二項分類問題における精度とメモリのトレードオフについて検討し、古典線形カーネルと比較してQImRに基づく量子カーネルの性能を評価する。
以上の結果から,量子カーネルの分類平均精度は同等だが,画像記憶に要するリソースは指数的に少ないことが示唆された。
関連論文リスト
- Image Denoising with Machine Learning: A Novel Approach to Improve Quantum Image Processing Quality and Reliability [3.8704324110545767]
量子画像処理(QIP)は、画像の操作と解析に量子コンピューティングの利点を活用することを目的としている。
QIPは量子ビットの制限と量子マシンにおけるノイズの存在という2つの課題に直面している。
本稿では,量子処理された画像のノイズを特定し,修正する機械学習モデルを用いて,QIPにおけるノイズ問題に対処する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-18T16:55:54Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum-parallel vectorized data encodings and computations on
trapped-ions and transmons QPUs [0.3262230127283452]
我々は、QCrankとQBArtという2つの新しいデータ符号化方式を導入する。
QCrankは実数値データのシーケンスをデータキュービットの回転としてエンコードし、高いストレージ密度を実現する。
QBArtはデータのバイナリ表現を計算ベースに埋め込み、量子測定を少なくする。
論文 参考訳(メタデータ) (2023-01-19T01:26:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - RGB Image Classification with Quantum Convolutional Ansaetze [18.379304679643436]
本稿では,RGB画像上の畳み込み操作をシミュレートする2種類の量子回路アンセッツェを提案する。
我々の知る限りでは、これはRGB画像を効果的に扱う量子畳み込み回路の最初の作品である。
また、量子回路アンサッツの大きさとハイブリッド量子古典畳み込みニューラルネットワークの学習性との関係についても検討する。
論文 参考訳(メタデータ) (2021-07-23T09:38:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。