CodableLLM: Automating Decompiled and Source Code Mapping for LLM Dataset Generation
- URL: http://arxiv.org/abs/2507.22066v1
- Date: Wed, 02 Jul 2025 15:15:12 GMT
- Title: CodableLLM: Automating Decompiled and Source Code Mapping for LLM Dataset Generation
- Authors: Dylan Manuel, Paul Rad,
- Abstract summary: CodableLLM is a Python framework designed to automate the creation and curation of datasets by mapping decompiled functions to their corresponding source functions.<n>CodableLLM supports multiple programming languages and integrates with existing decompilers to streamline dataset generation.
- Score: 2.2252684361733293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The generation of large, high-quality datasets for code understanding and generation remains a significant challenge, particularly when aligning decompiled binaries with their original source code. To address this, we present CodableLLM, a Python framework designed to automate the creation and curation of datasets by mapping decompiled functions to their corresponding source functions. This process enhances the alignment between decompiled and source code representations, facilitating the development of large language models (LLMs) capable of understanding and generating code across multiple abstraction levels. CodableLLM supports multiple programming languages and integrates with existing decompilers and parsers to streamline dataset generation. This paper presents the design and implementation of CodableLLM, evaluates its performance in dataset creation, and compares it to existing tools in the field. The results demonstrate that CodableLLM offers a robust and efficient solution for generating datasets tailored for code-focused LLMS.
Related papers
- IFEvalCode: Controlled Code Generation [69.28317223249358]
The paper introduces forward and backward constraints generation to improve the instruction-following capabilities of Code LLMs.<n>The authors present IFEvalCode, a multilingual benchmark comprising 1.6K test samples across seven programming languages.
arXiv Detail & Related papers (2025-07-30T08:08:48Z) - OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs [62.68905180014956]
We introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples.<n>Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments.<n>We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset.
arXiv Detail & Related papers (2025-04-05T02:52:16Z) - ViC: Virtual Compiler Is All You Need For Assembly Code Search [9.674880905252628]
This paper explores training a Large Language Model (LLM) to emulate a general compiler.
We further pre-train CodeLlama as a Virtual Compiler (ViC), capable of compiling any source code of any language to assembly code.
We achieve a substantial improvement in assembly code search performance, with our model surpassing the leading baseline by 26%.
arXiv Detail & Related papers (2024-08-10T17:23:02Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
CodeGRAG builds the graphical view of code blocks based on the control flow and data flow of them to better interpret the programming domain knowledge.<n>CodeGRAG significantly improves the code generation ability of LLMs and can even offer performance gain for cross-lingual code generation.
arXiv Detail & Related papers (2024-05-03T02:48:55Z) - IRCoder: Intermediate Representations Make Language Models Robust Multilingual Code Generators [49.903001442804594]
This work investigates the prospect of leveraging compiler intermediate representations (IR) to improve the multilingual capabilities of Code-LMs.
We first compile SLTrans, a parallel dataset consisting of nearly 4M self-contained source code files.
Next, we carry out continued causal language modelling training on SLTrans, forcing the Code-LMs to learn the IR language.
Our resulting models, dubbed IRCoder, display sizeable and consistent gains across a wide variety of code generation tasks and metrics.
arXiv Detail & Related papers (2024-03-06T17:52:08Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - Exploring Large Language Models for Code Explanation [3.2570216147409514]
Large Language Models (LLMs) have made remarkable strides in Natural Language Processing.
This study specifically delves into the task of generating natural-language summaries for code snippets, using various LLMs.
arXiv Detail & Related papers (2023-10-25T14:38:40Z) - Bridging Code Semantic and LLMs: Semantic Chain-of-Thought Prompting for
Code Generation [22.219645213202178]
This paper proposes the "Semantic Chain-of-Thought" approach to intruduce semantic information of code, named SeCoT.
We show that SeCoT can achieves state-of-the-art performance, greatly improving the potential for large models and code generation.
arXiv Detail & Related papers (2023-10-16T05:09:58Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
We present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence.
Our library supports a collection of pretrained Code LLM models and popular code benchmarks.
We hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering.
arXiv Detail & Related papers (2023-05-31T05:24:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.