論文の概要: Prototype-Guided Pseudo-Labeling with Neighborhood-Aware Consistency for Unsupervised Adaptation
- arxiv url: http://arxiv.org/abs/2507.22075v1
- Date: Tue, 22 Jul 2025 19:08:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.740059
- Title: Prototype-Guided Pseudo-Labeling with Neighborhood-Aware Consistency for Unsupervised Adaptation
- Title(参考訳): 教師なし適応のための近傍認識整合性を有するプロトタイプガイド擬似ラベル
- Authors: Eman Ali, Chetan Arora, Muhammad Haris Khan,
- Abstract要約: CLIPのような視覚言語モデルに対する教師なし適応では、ゼロショット予測からの擬似ラベルは大きなノイズを示すことが多い。
本稿では,プロトタイプの整合性と近傍の整合性を統合することで,CLIPの適応性能を向上させる適応型擬似ラベルフレームワークを提案する。
提案手法は、教師なし適応シナリオにおける最先端性能を実現し、計算効率を維持しつつ、より正確な擬似ラベルを提供する。
- 参考スコア(独自算出の注目度): 12.829638461740759
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In unsupervised adaptation for vision-language models such as CLIP, pseudo-labels derived from zero-shot predictions often exhibit significant noise, particularly under domain shifts or in visually complex scenarios. Conventional pseudo-label filtering approaches, which rely on fixed confidence thresholds, tend to be unreliable in fully unsupervised settings. In this work, we propose a novel adaptive pseudo-labeling framework that enhances CLIP's adaptation performance by integrating prototype consistency and neighborhood-based consistency. The proposed method comprises two key components: PICS, which assesses pseudo-label accuracy based on in-class feature compactness and cross-class feature separation; and NALR, which exploits semantic similarities among neighboring samples to refine pseudo-labels dynamically. Additionally, we introduce an adaptive weighting mechanism that adjusts the influence of pseudo-labeled samples during training according to their estimated correctness. Extensive experiments on 11 benchmark datasets demonstrate that our method achieves state-of-the-art performance in unsupervised adaptation scenarios, delivering more accurate pseudo-labels while maintaining computational efficiency.
- Abstract(参考訳): CLIPのような視覚言語モデルに対する教師なし適応では、ゼロショット予測から派生した擬似ラベルは、特にドメインシフトや視覚的に複雑なシナリオにおいて、大きなノイズを示すことが多い。
固定された信頼しきい値に依存する従来の擬似ラベルフィルタリング手法は、完全に教師なしの設定では信頼できない傾向にある。
本研究では,CLIPの適応性能を高めるために,プロトタイプの整合性と近傍の整合性を統合することで,適応的な擬似ラベルフレームワークを提案する。
提案手法は,クラス内特徴のコンパクトさとクラス間特徴分離に基づいて擬似ラベルの精度を評価するPICSと,近隣サンプル間の意味的類似性を利用して擬似ラベルを動的に洗練するNALRの2つの主要成分からなる。
さらに,トレーニング中の擬似ラベル標本の影響を推定精度に応じて調整する適応重み付け機構を導入する。
11のベンチマークデータセットに対する大規模な実験により、教師なし適応シナリオにおいて、我々の手法が最先端のパフォーマンスを達成し、計算効率を維持しつつ、より正確な擬似ラベルを提供することを示した。
関連論文リスト
- Towards Fine-Grained Adaptation of CLIP via a Self-Trained Alignment Score [11.74414842618874]
適応中の微粒な相互モーダル相互作用をモデル化すると、より正確でクラス別な擬似ラベルが得られることを示す。
局所化画像特徴と記述言語埋め込みとを動的に整合させる革新的なアプローチであるFAIR(ファインフルアライメント・アンド・インタラクション・リファインメント)を導入する。
当社のアプローチであるFAIRは、きめ細かな教師なし適応において大幅なパフォーマンス向上を実現し、2.78%という顕著な全体的な向上を実現しています。
論文 参考訳(メタデータ) (2025-07-13T12:38:38Z) - Feedback-Driven Pseudo-Label Reliability Assessment: Redefining Thresholding for Semi-Supervised Semantic Segmentation [5.7977777220041204]
擬似スーパービジョンの一般的な実践は、事前に定義された信頼しきい値やエントロピーに基づいて擬似ラベルをフィルタリングすることである。
疑似ラベル選択のための動的フィードバック駆動しきい値決定手法であるEnsemble-of-Confidence Reinforcement (ENCORE)を提案する。
提案手法は,既存の擬似スーパービジョンフレームワークにシームレスに統合され,セグメンテーション性能が大幅に向上する。
論文 参考訳(メタデータ) (2025-05-12T15:58:08Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
半教師付きマルチラベル学習(SSMLL)は、正確なマルチラベルアノテーションを収集するコストを削減するために、ラベルのないデータを活用する強力なフレームワークである。
半教師付き学習とは異なり、インスタンスに含まれる複数のセマンティクスのため、SSMLLの擬似ラベルとして最も確率の高いラベルを選択することはできない。
本稿では,高品質な擬似ラベルを生成するための二重パースペクティブ手法を提案する。
論文 参考訳(メタデータ) (2024-07-26T09:33:53Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
本稿では,テスト時間適応性を高めるための新しい補完学習手法を提案する。
テスト時適応タスクでは、ソースドメインからの情報は通常利用できない。
我々は,相補ラベルのリスク関数がバニラ損失式と一致することを強調した。
論文 参考訳(メタデータ) (2023-01-15T03:36:33Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
教師なしの人物再識別(ReID)は、アノテーションを使わずに人物検索のための識別的アイデンティティの特徴を学習することを目的としている。
近年の進歩はクラスタリングに基づく擬似ラベルを活用することで実現されている。
本稿では, Pseudo Label Refinement フレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-30T09:39:57Z) - Contrastive Test-Time Adaptation [83.73506803142693]
本稿では,自己指導型コントラスト学習を活用して特徴学習を支援する新しい手法を提案する。
擬似ラベルをオンラインで作成し、ターゲットのフィーチャースペースに最も近い隣人の間でソフト投票によってそれらを洗練します。
我々の手法であるAdaContrastは、主要なベンチマーク上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-04-21T19:17:22Z) - Rethinking Pseudo Labels for Semi-Supervised Object Detection [84.697097472401]
物体検出に適した確実な擬似ラベルを導入する。
我々は,クラス不均衡問題を緩和するために,各カテゴリの擬似ラベルと再重み付き損失関数を生成するために使用する閾値を動的に調整する。
提案手法では,COCOのラベル付きデータのみを用いて,教師付きベースラインを最大10%改善する。
論文 参考訳(メタデータ) (2021-06-01T01:32:03Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Selective Pseudo-Labeling with Reinforcement Learning for
Semi-Supervised Domain Adaptation [116.48885692054724]
半教師付きドメイン適応のための強化学習に基づく選択擬似ラベル法を提案する。
高精度かつ代表的な擬似ラベルインスタンスを選択するための深層Q-ラーニングモデルを開発する。
提案手法は, SSDAのベンチマークデータセットを用いて評価し, 全ての比較手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2020-12-07T03:37:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。