論文の概要: Simulating Posterior Bayesian Neural Networks with Dependent Weights
- arxiv url: http://arxiv.org/abs/2507.22095v1
- Date: Tue, 29 Jul 2025 15:54:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.767762
- Title: Simulating Posterior Bayesian Neural Networks with Dependent Weights
- Title(参考訳): 依存重みによる後ベイズニューラルネットワークのシミュレーション
- Authors: Nicola Apollonio, Giovanni Franzina, Giovanni Luca Torrisi,
- Abstract要約: 重み付き後ベイズ完全結合およびフィードフォワードディープニューラルネットワークについて検討した。
広帯域限界の分布を同定し,ネットワークからサンプリングするアルゴリズムを提案する。
すべての理論的結果は数値的に検証される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we consider posterior Bayesian fully connected and feedforward deep neural networks with dependent weights. Particularly, if the likelihood is Gaussian, we identify the distribution of the wide width limit and provide an algorithm to sample from the network. In the shallow case we explicitly compute the distribution of the output, proving that it is a Gaussian mixture. All the theoretical results are numerically validated.
- Abstract(参考訳): 本稿では,重みが依存する後ベイズ完全連結およびフィードフォワードディープニューラルネットワークについて考察する。
特に、確率がガウス的であれば、幅制限の分布を特定し、ネットワークからサンプリングするアルゴリズムを提供する。
浅い場合、出力の分布を明示的に計算し、それがガウス混合であることを証明する。
すべての理論的結果は数値的に検証される。
関連論文リスト
- Wide Deep Neural Networks with Gaussian Weights are Very Close to
Gaussian Processes [1.0878040851638]
ネットワーク出力と対応するガウス近似との距離は、ネットワークの幅と逆向きにスケールし、中心極限定理によって提案されるネーブよりも高速な収束を示すことを示す。
また、(有限)トレーニングセットで評価されたネットワーク出力の有界リプシッツ関数である場合、ネットワークの正確な後部分布の理論的近似を求めるために境界を適用した。
論文 参考訳(メタデータ) (2023-12-18T22:29:40Z) - Bayesian inference with finitely wide neural networks [0.4568777157687961]
確率的ニューラルネットワークから出力の有限集合をモデル化するために,微分形式の非ガウス分布を提案する。
ベイズ回帰課題における非ガウス的後部分布を導出できる。
論文 参考訳(メタデータ) (2023-03-06T03:25:30Z) - Computational Complexity of Learning Neural Networks: Smoothness and
Degeneracy [52.40331776572531]
ガウス入力分布下での学習深度3$ReLUネットワークはスムーズな解析フレームワークにおいても困難であることを示す。
この結果は, 局所擬似乱数発生器の存在についてよく研究されている。
論文 参考訳(メタデータ) (2023-02-15T02:00:26Z) - Bayesian Interpolation with Deep Linear Networks [92.1721532941863]
ニューラルネットワークの深さ、幅、データセットサイズがモデル品質にどう影響するかを特徴付けることは、ディープラーニング理論における中心的な問題である。
線形ネットワークが無限深度で証明可能な最適予測を行うことを示す。
また、データに依存しない先行法により、広い線形ネットワークにおけるベイズ模型の証拠は無限の深さで最大化されることを示す。
論文 参考訳(メタデータ) (2022-12-29T20:57:46Z) - On the Neural Tangent Kernel Analysis of Randomly Pruned Neural Networks [91.3755431537592]
ニューラルネットワークのニューラルカーネル(NTK)に重みのランダムプルーニングが及ぼす影響について検討する。
特に、この研究は、完全に接続されたニューラルネットワークとそのランダムに切断されたバージョン間のNTKの等価性を確立する。
論文 参考訳(メタデータ) (2022-03-27T15:22:19Z) - Quantitative Gaussian Approximation of Randomly Initialized Deep Neural
Networks [1.0878040851638]
隠れ層と出力層のサイズがネットワークのガウス的振る舞いにどのように影響するかを示す。
我々の明示的な不等式は、隠蔽層と出力層がネットワークのガウス的振る舞いにどのように影響するかを示している。
論文 参考訳(メタデータ) (2022-03-14T14:20:19Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
標準ガウス重みと一様分布バイアスを持つ十分に大きな2層ReLUネットワークは、この問題を高い確率で解くことができることを示す。
我々は、相互複雑性という新しい概念の観点から、データの関連構造を定量化する。
論文 参考訳(メタデータ) (2021-07-31T10:25:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。