AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock
- URL: http://arxiv.org/abs/2507.22101v1
- Date: Tue, 29 Jul 2025 17:59:48 GMT
- Title: AI in Agriculture: A Survey of Deep Learning Techniques for Crops, Fisheries and Livestock
- Authors: Umair Nawaz, Muhammad Zaigham Zaheer, Fahad Shahbaz Khan, Hisham Cholakkal, Salman Khan, Rao Muhammad Anwer,
- Abstract summary: Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population.<n> Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI)<n>This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques, and recent vision-language foundation models.
- Score: 77.95897723270453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Crops, fisheries and livestock form the backbone of global food production, essential to feed the ever-growing global population. However, these sectors face considerable challenges, including climate variability, resource limitations, and the need for sustainable management. Addressing these issues requires efficient, accurate, and scalable technological solutions, highlighting the importance of artificial intelligence (AI). This survey presents a systematic and thorough review of more than 200 research works covering conventional machine learning approaches, advanced deep learning techniques (e.g., vision transformers), and recent vision-language foundation models (e.g., CLIP) in the agriculture domain, focusing on diverse tasks such as crop disease detection, livestock health management, and aquatic species monitoring. We further cover major implementation challenges such as data variability and experimental aspects: datasets, performance evaluation metrics, and geographical focus. We finish the survey by discussing potential open research directions emphasizing the need for multimodal data integration, efficient edge-device deployment, and domain-adaptable AI models for diverse farming environments. Rapid growth of evolving developments in this field can be actively tracked on our project page: https://github.com/umair1221/AI-in-Agriculture
Related papers
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
Anomaly detection (AD) plays a pivotal role across diverse domains, including cybersecurity, finance, healthcare, and industrial manufacturing.<n>Recent advancements in deep learning, specifically diffusion models (DMs), have sparked significant interest.<n>This survey aims to guide researchers and practitioners in leveraging DMs for innovative AD solutions across diverse applications.
arXiv Detail & Related papers (2025-06-11T03:29:18Z) - Bridging Domain Gaps in Agricultural Image Analysis: A Comprehensive Review From Shallow Adaptation to Deep Learning [17.455138644418618]
This paper investigates how Domain Adaptation techniques can address challenges by improving cross-domain transferability in agricultural image analysis.<n>The review systematically summarizes recent advances in DA for agricultural imagery, focusing on applications such as crop health monitoring, pest detection, and fruit recognition.
arXiv Detail & Related papers (2025-06-06T10:52:10Z) - A Multimodal Benchmark Dataset and Model for Crop Disease Diagnosis [5.006697347461899]
We present the crop disease domain multimodal dataset, a pioneering resource designed to advance the field of agricultural research.<n>The dataset comprises 137,000 images of various crop diseases, accompanied by 1 million question-answer pairs that span a broad spectrum of agricultural knowledge.<n>We demonstrate the utility of the dataset by finetuning state-of-the-art multimodal models, showcasing significant improvements in crop disease diagnosis.
arXiv Detail & Related papers (2025-03-10T06:37:42Z) - Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases [49.782064512495495]
We construct the first multimodal instruction-following dataset in the agricultural domain.<n>This dataset covers over 221 types of pests and diseases with approximately 400,000 data entries.<n>We propose a knowledge-infused training method to develop Agri-LLaVA, an agricultural multimodal conversation system.
arXiv Detail & Related papers (2024-12-03T04:34:23Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Explainable AI in Grassland Monitoring: Enhancing Model Performance and
Domain Adaptability [0.6131022957085438]
Grasslands are known for their high biodiversity and ability to provide multiple ecosystem services.
Challenges in automating the identification of indicator plants are key obstacles to large-scale grassland monitoring.
This paper delves into the latter two challenges, with a specific focus on transfer learning and XAI approaches to grassland monitoring.
arXiv Detail & Related papers (2023-12-13T10:17:48Z) - Data-Centric Digital Agriculture: A Perspective [23.566985362242498]
Digital agriculture is rapidly evolving to meet increasing global demand for food, feed, fiber, and fuel.
Machine learning research in digital agriculture has predominantly focused on model-centric approaches.
To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field.
arXiv Detail & Related papers (2023-12-06T11:38:26Z) - Artificial Intelligence in Sustainable Vertical Farming [0.0]
The paper provides a comprehensive exploration of the role of AI in sustainable vertical farming.
The review synthesizes the current state of AI applications, encompassing machine learning, computer vision, the Internet of Things (IoT), and robotics.
The implications extend beyond efficiency gains, considering economic viability, reduced environmental impact, and increased food security.
arXiv Detail & Related papers (2023-11-17T22:15:41Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
arXiv Detail & Related papers (2023-05-03T05:16:54Z) - Domain Generalization for Crop Segmentation with Standardized Ensemble Knowledge Distillation [42.39035033967183]
Service robots need a real-time perception system that understands their surroundings and identifies their targets in the wild.
Existing methods, however, often fall short in generalizing to new crops and environmental conditions.
We propose a novel approach to enhance domain generalization using knowledge distillation.
arXiv Detail & Related papers (2023-04-03T14:28:29Z) - Seeing biodiversity: perspectives in machine learning for wildlife
conservation [49.15793025634011]
We argue that machine learning can meet this analytic challenge to enhance our understanding, monitoring capacity, and conservation of wildlife species.
In essence, by combining new machine learning approaches with ecological domain knowledge, animal ecologists can capitalize on the abundance of data generated by modern sensor technologies.
arXiv Detail & Related papers (2021-10-25T13:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.