Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities
- URL: http://arxiv.org/abs/2305.01899v2
- Date: Thu, 26 Sep 2024 13:34:35 GMT
- Title: Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities
- Authors: Tao Chen, Liang Lv, Di Wang, Jing Zhang, Yue Yang, Zeyang Zhao, Chen Wang, Xiaowei Guo, Hao Chen, Qingye Wang, Yufei Xu, Qiming Zhang, Bo Du, Liangpei Zhang, Dacheng Tao,
- Abstract summary: We review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry.
We present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery.
We highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI.
- Score: 86.89427012495457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the world population rapidly increasing, transforming our agrifood systems to be more productive, efficient, safe, and sustainable is crucial to mitigate potential food shortages. Recently, artificial intelligence (AI) techniques such as deep learning (DL) have demonstrated their strong abilities in various areas, including language, vision, remote sensing (RS), and agrifood systems applications. However, the overall impact of AI on agrifood systems remains unclear. In this paper, we thoroughly review how AI techniques can transform agrifood systems and contribute to the modern agrifood industry. Firstly, we summarize the data acquisition methods in agrifood systems, including acquisition, storage, and processing techniques. Secondly, we present a progress review of AI methods in agrifood systems, specifically in agriculture, animal husbandry, and fishery, covering topics such as agrifood classification, growth monitoring, yield prediction, and quality assessment. Furthermore, we highlight potential challenges and promising research opportunities for transforming modern agrifood systems with AI. We hope this survey could offer an overall picture to newcomers in the field and serve as a starting point for their further research. The project website is https://github.com/Frenkie14/Agrifood-Survey.
Related papers
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
We present a framework to better identify food security hotspots using a combination of remote sensing, deep learning, crop yield modeling, and causal modeling of the food distribution system.
We focus our analysis on the wheat breadbasket of northern India, which supplies a large percentage of the world's population.
arXiv Detail & Related papers (2024-11-07T22:29:05Z) - Application of Machine Learning in Agriculture: Recent Trends and Future Research Avenues [6.0460261046732455]
Food production is a vital global concern and the potential for an agritech revolution through artificial intelligence (AI) remains largely unexplored.
This paper presents a comprehensive review focused on the application of machine learning (ML) in agriculture, aiming to explore its transformative potential in farming practices and efficiency enhancement.
arXiv Detail & Related papers (2024-05-23T17:53:31Z) - From Plate to Production: Artificial Intelligence in Modern
Consumer-Driven Food Systems [32.55158589420258]
Global food systems confront supplying, nutritious diets in the face of escalating demands.
The advent of Artificial Intelligence is bringing in a personal choice revolution, wherein AI-driven individual decisions transform food systems.
This paper explores AI promise and challenges it poses within the food domain.
arXiv Detail & Related papers (2023-11-04T13:13:44Z) - Elephants and Algorithms: A Review of the Current and Future Role of AI
in Elephant Monitoring [47.24825031148412]
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behavior and conservation strategies.
Using elephants, a crucial species in Africa's protected areas, as our focal point, we delve into the role of AI and ML in their conservation.
New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked.
arXiv Detail & Related papers (2023-06-23T22:35:51Z) - AGI for Agriculture [30.785325834651644]
Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education.
This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure.
arXiv Detail & Related papers (2023-04-12T19:39:49Z) - Affordable Artificial Intelligence -- Augmenting Farmer Knowledge with
AI [1.9992810351494297]
This article presents the AI technology for predicting micro-climate conditions on the farm.
This publication is the fifth in the E-agriculture in Action series, launched in 2016 and jointly produced by FAO and ITU.
It aims to raise awareness about existing AI applications in agriculture and to inspire stakeholders to develop and replicate the new ones.
arXiv Detail & Related papers (2023-03-04T02:29:52Z) - Fruit Ripeness Classification: a Survey [59.11160990637616]
Many automatic methods have been proposed that employ a variety of feature descriptors for the food item to be graded.
Machine learning and deep learning techniques dominate the top-performing methods.
Deep learning can operate on raw data and thus relieve the users from having to compute complex engineered features.
arXiv Detail & Related papers (2022-12-29T19:32:20Z) - Everything You wanted to Know about Smart Agriculture [2.5155102296586036]
The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand.
To cater to the needs of the increasing population, the agricultural industry needs to be modernized.
Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies.
arXiv Detail & Related papers (2022-01-13T00:48:36Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.