論文の概要: Agent-centric learning: from external reward maximization to internal knowledge curation
- arxiv url: http://arxiv.org/abs/2507.22255v1
- Date: Tue, 29 Jul 2025 22:09:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:17.885226
- Title: Agent-centric learning: from external reward maximization to internal knowledge curation
- Title(参考訳): エージェント中心学習:外部報酬最大化から内部知識キュレーションへ
- Authors: Hanqi Zhou, Fryderyk Mantiuk, David G. Nagy, Charley M. Wu,
- Abstract要約: 我々は,真にエージェント中心の学習パラダイムに向けた新たな視点である表現力化を提案する。
この目的は、エージェントが自身の知識構造を制御的に維持し、多様化する能力を測定することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The pursuit of general intelligence has traditionally centered on external objectives: an agent's control over its environments or mastery of specific tasks. This external focus, however, can produce specialized agents that lack adaptability. We propose representational empowerment, a new perspective towards a truly agent-centric learning paradigm by moving the locus of control inward. This objective measures an agent's ability to controllably maintain and diversify its own knowledge structures. We posit that the capacity -- to shape one's own understanding -- is an element for achieving better ``preparedness'' distinct from direct environmental influence. Focusing on internal representations as the main substrate for computing empowerment offers a new lens through which to design adaptable intelligent systems.
- Abstract(参考訳): 汎用知能の追求は伝統的に、エージェントが環境を制御したり、特定のタスクを熟達するといった、外部の目的に重点を置いてきた。
しかし、この外部焦点は適応性に欠ける特殊エージェントを生み出すことができる。
本稿では,制御の軌跡を内向きに移動させることにより,真にエージェント中心の学習パラダイムへの新たな視点である表現力化を提案する。
この目的は、エージェントが自身の知識構造を制御的に維持し、多様化する能力を測定することである。
我々は、自己の理解を形作る能力は、直接の環境影響と異なる「準備性」をより良く達成するための要素であると仮定する。
コンピュータエンパワーメントの主要な基盤として内部表現に焦点を当てることで、適応可能なインテリジェントなシステムを設計するための新しいレンズを提供する。
関連論文リスト
- Truly Self-Improving Agents Require Intrinsic Metacognitive Learning [59.60803539959191]
自己改善エージェントは、最小限の監督で継続的に新しい能力を取得することを目的としている。
現在のアプローチは2つの重要な制限に直面している。自己改善プロセスは、しばしば厳格であり、タスクドメイン全体にわたって一般化できない。
我々は、効果的な自己改善は、エージェントの本質的な能力として定義された固有のメタ認知学習を必要とし、自身の学習プロセスを積極的に評価し、反映し、適応させる。
論文 参考訳(メタデータ) (2025-06-05T14:53:35Z) - Toward a Theory of Agents as Tool-Use Decision-Makers [89.26889709510242]
真の自律性は、エージェントが、彼らが知っていること、必要なこと、そしてその知識を効率的に獲得する方法を統治する、一貫性のある疫学の枠組みに根ざす必要がある、と我々は主張する。
本研究では,内的推論と外的行動を等価な疫学ツールとして扱う統一理論を提案し,エージェントが内観と相互作用を体系的に調整することを可能にする。
この視点は、エージェントの設計を単なるアクションエグゼクタから知識駆動インテリジェンスシステムにシフトさせ、適応的で効率的でゴール指向の行動が可能な基礎エージェントを構築するための原則化された道筋を提供する。
論文 参考訳(メタデータ) (2025-06-01T07:52:16Z) - Agentic Knowledgeable Self-awareness [79.25908923383776]
KnowSelfはデータ中心のアプローチで、人間のような知識のある自己認識を持つエージェントを応用する。
我々の実験により、KnowSelfは、外部知識を最小限に使用して、様々なタスクやモデルにおいて、様々な強力なベースラインを達成できることが実証された。
論文 参考訳(メタデータ) (2025-04-04T16:03:38Z) - Autotelic Reinforcement Learning: Exploring Intrinsic Motivations for Skill Acquisition in Open-Ended Environments [1.104960878651584]
本稿では, 自己強化学習(RL)の概要を概観し, スキルレパートリーのオープンエンド形成における本質的モチベーションの役割を強調した。
知識ベースと能力ベースの本質的なモチベーションの区別を明確にし、これらの概念が自己定義目標を生成・追求できる自律エージェントの開発にどのように役立つかを説明する。
論文 参考訳(メタデータ) (2025-02-06T14:37:46Z) - Information is Power: Intrinsic Control via Information Capture [110.3143711650806]
我々は,潜時状態空間モデルを用いて推定したエージェントの状態訪問のエントロピーを最小化する,コンパクトで汎用的な学習目的を論じる。
この目的は、不確実性の低減に対応する環境情報収集と、将来の世界状態の予測不可能性の低減に対応する環境制御の両方をエージェントに誘導する。
論文 参考訳(メタデータ) (2021-12-07T18:50:42Z) - Unsupervised Domain Adaptation with Dynamics-Aware Rewards in
Reinforcement Learning [28.808933152885874]
無条件強化学習は、事前の目標表現なしでスキルを獲得することを目的としている。
別の相互作用に富んだ環境でのトレーニングの直感的なアプローチは、ターゲット環境におけるトレーニングスキルを阻害する。
本稿では,動的にスキルを習得するための教師なしドメイン適応手法を提案する。
論文 参考訳(メタデータ) (2021-10-25T14:40:48Z) - Mutual Information-based State-Control for Intrinsically Motivated
Reinforcement Learning [102.05692309417047]
強化学習において、エージェントは、外部報酬信号を用いて一連の目標に到達することを学習する。
自然界では、知的生物は内部の駆動から学習し、外部の信号を必要としない。
目的状態と制御可能な状態の間の相互情報として本質的な目的を定式化する。
論文 参考訳(メタデータ) (2020-02-05T19:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。