Comparing Cluster-Based Cross-Validation Strategies for Machine Learning Model Evaluation
- URL: http://arxiv.org/abs/2507.22299v1
- Date: Wed, 30 Jul 2025 00:13:52 GMT
- Title: Comparing Cluster-Based Cross-Validation Strategies for Machine Learning Model Evaluation
- Authors: Afonso Martini Spezia, Mariana Recamonde-Mendoza,
- Abstract summary: Cross-validation plays a fundamental role in Machine Learning, enabling robust evaluation of model performance and preventing overestimation on training and validation data.<n>The objective of this work is to deepen the investigation of cluster-based cross-validation strategies by analyzing the performance of different clustering algorithms.<n>A new cross-validation technique that combines Mini Batch K-Means with class stratification is proposed.
- Score: 0.6215404942415159
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-validation plays a fundamental role in Machine Learning, enabling robust evaluation of model performance and preventing overestimation on training and validation data. However, one of its drawbacks is the potential to create data subsets (folds) that do not adequately represent the diversity of the original dataset, which can lead to biased performance estimates. The objective of this work is to deepen the investigation of cluster-based cross-validation strategies by analyzing the performance of different clustering algorithms through experimental comparison. Additionally, a new cross-validation technique that combines Mini Batch K-Means with class stratification is proposed. Experiments were conducted on 20 datasets (both balanced and imbalanced) using four supervised learning algorithms, comparing cross-validation strategies in terms of bias, variance, and computational cost. The technique that uses Mini Batch K-Means with class stratification outperformed others in terms of bias and variance on balanced datasets, though it did not significantly reduce computational cost. On imbalanced datasets, traditional stratified cross-validation consistently performed better, showing lower bias, variance, and computational cost, making it a safe choice for performance evaluation in scenarios with class imbalance. In the comparison of different clustering algorithms, no single algorithm consistently stood out as superior. Overall, this work contributes to improving predictive model evaluation strategies by providing a deeper understanding of the potential of cluster-based data splitting techniques and reaffirming the effectiveness of well-established strategies like stratified cross-validation. Moreover, it highlights perspectives for increasing the robustness and reliability of model evaluations, especially in datasets with clustering characteristics.
Related papers
- A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
Imbalanced datasets are commonly observed in various real-world applications, presenting significant challenges in training classifiers.
We propose generating synthetic samples iteratively by mixing data samples from both minority and majority classes.
We demonstrate the effectiveness of our proposed framework through extensive experiments conducted on seven publicly available benchmark datasets.
arXiv Detail & Related papers (2023-08-28T18:48:34Z) - Machine Learning Based Missing Values Imputation in Categorical Datasets [2.5611256859404983]
This research looked into the use of machine learning algorithms to fill in the gaps in categorical datasets.
The emphasis was on ensemble models constructed using the Error Correction Output Codes framework.
Deep learning for missing data imputation has obstacles despite these encouraging results, including the requirement for large amounts of labeled data.
arXiv Detail & Related papers (2023-06-10T03:29:48Z) - A review of ensemble learning and data augmentation models for class
imbalanced problems: combination, implementation and evaluation [0.196629787330046]
Class imbalance (CI) in classification problems arises when the number of observations belonging to one class is lower than the other.
In this paper, we evaluate data augmentation and ensemble learning methods used to address prominent benchmark CI problems.
arXiv Detail & Related papers (2023-04-06T04:37:10Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - BALanCe: Deep Bayesian Active Learning via Equivalence Class Annealing [7.9107076476763885]
BALanCe is a deep active learning framework that mitigates the effect of uncertainty estimates.
Batch-BALanCe is a generalization of the sequential algorithm to the batched setting.
We show that Batch-BALanCe achieves state-of-the-art performance on several benchmark datasets for active learning.
arXiv Detail & Related papers (2021-12-27T15:38:27Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z) - Transductive Few-Shot Learning: Clustering is All You Need? [31.21306826132773]
We investigate a general formulation for transive few-shot learning, which integrates prototype-based objectives.
We find that our method yields competitive performances, in term of accuracy and optimization, while scaling up to large problems.
Surprisingly, we find that our general model already achieve competitive performances in comparison to the state-of-the-art learning.
arXiv Detail & Related papers (2021-06-16T16:14:01Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
We propose a hybrid ensemble algorithm based on Genetic Programming (GP) for two classes of imbalanced data classification.
Experimental results show the performance of the proposed method on the specified data sets in the size of the training set shows 40% and 50% better accuracy than other dimensions of the minority class prediction.
arXiv Detail & Related papers (2021-06-02T14:14:38Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Performance Evaluation of Adversarial Attacks: Discrepancies and
Solutions [51.8695223602729]
adversarial attack methods have been developed to challenge the robustness of machine learning models.
We propose a Piece-wise Sampling Curving (PSC) toolkit to effectively address the discrepancy.
PSC toolkit offers options for balancing the computational cost and evaluation effectiveness.
arXiv Detail & Related papers (2021-04-22T14:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.