Object Recognition Datasets and Challenges: A Review
- URL: http://arxiv.org/abs/2507.22361v1
- Date: Wed, 30 Jul 2025 03:56:37 GMT
- Title: Object Recognition Datasets and Challenges: A Review
- Authors: Aria Salari, Abtin Djavadifar, Xiangrui Liu, Homayoun Najjaran,
- Abstract summary: We provide a detailed analysis of datasets in the highly investigated object recognition areas.<n>We present an overview of the prominent object recognition benchmarks and competitions.<n>All introduced datasets and challenges can be found online at.com/AbtinDjavadifar/ORDC.
- Score: 5.638005500131518
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object recognition is among the fundamental tasks in the computer vision applications, paving the path for all other image understanding operations. In every stage of progress in object recognition research, efforts have been made to collect and annotate new datasets to match the capacity of the state-of-the-art algorithms. In recent years, the importance of the size and quality of datasets has been intensified as the utility of the emerging deep network techniques heavily relies on training data. Furthermore, datasets lay a fair benchmarking means for competitions and have proved instrumental to the advancements of object recognition research by providing quantifiable benchmarks for the developed models. Taking a closer look at the characteristics of commonly-used public datasets seems to be an important first step for data-driven and machine learning researchers. In this survey, we provide a detailed analysis of datasets in the highly investigated object recognition areas. More than 160 datasets have been scrutinized through statistics and descriptions. Additionally, we present an overview of the prominent object recognition benchmarks and competitions, along with a description of the metrics widely adopted for evaluation purposes in the computer vision community. All introduced datasets and challenges can be found online at github.com/AbtinDjavadifar/ORDC.
Related papers
- Smelly, dense, and spreaded: The Object Detection for Olfactory References (ODOR) dataset [11.701487651068263]
The proposed ODOR dataset offers 38,116 object-level annotations across 4712 images.<n>We showcase challenging dataset properties, such as a detailed set of categories, dense and overlapping objects, and spatial distribution over the whole image canvas.<n>The dataset challenges researchers to explore the intersection of object recognition and smell perception.
arXiv Detail & Related papers (2025-07-11T07:58:21Z) - Oriented Tiny Object Detection: A Dataset, Benchmark, and Dynamic Unbiased Learning [51.170479006249195]
We introduce a new dataset, benchmark, and a dynamic coarse-to-fine learning scheme in this study.<n>Our proposed dataset, AI-TOD-R, features the smallest object sizes among all oriented object detection datasets.<n>We present a benchmark spanning a broad range of detection paradigms, including both fully-supervised and label-efficient approaches.
arXiv Detail & Related papers (2024-12-16T09:14:32Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
Underwater image enhancement (UIE) presents a significant challenge within computer vision research.
Despite the development of numerous UIE algorithms, a thorough and systematic review is still absent.
arXiv Detail & Related papers (2024-05-30T04:46:40Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - Navigating Dataset Documentations in AI: A Large-Scale Analysis of
Dataset Cards on Hugging Face [46.60562029098208]
We analyze all 7,433 dataset documentation on Hugging Face.
Our study offers a unique perspective on analyzing dataset documentation through large-scale data science analysis.
arXiv Detail & Related papers (2024-01-24T21:47:13Z) - DataPerf: Benchmarks for Data-Centric AI Development [81.03754002516862]
DataPerf is a community-led benchmark suite for evaluating ML datasets and data-centric algorithms.
We provide an open, online platform with multiple rounds of challenges to support this iterative development.
The benchmarks, online evaluation platform, and baseline implementations are open source.
arXiv Detail & Related papers (2022-07-20T17:47:54Z) - A large scale multi-view RGBD visual affordance learning dataset [4.3773754388936625]
We introduce a large scale multi-view RGBD visual affordance learning dataset.
This is the first ever and the largest multi-view RGBD visual affordance learning dataset.
Several state-of-the-art deep learning networks are evaluated each for affordance recognition and segmentation tasks.
arXiv Detail & Related papers (2022-03-26T14:31:35Z) - Salient Objects in Clutter [130.63976772770368]
This paper identifies and addresses a serious design bias of existing salient object detection (SOD) datasets.
This design bias has led to a saturation in performance for state-of-the-art SOD models when evaluated on existing datasets.
We propose a new high-quality dataset and update the previous saliency benchmark.
arXiv Detail & Related papers (2021-05-07T03:49:26Z) - REGRAD: A Large-Scale Relational Grasp Dataset for Safe and
Object-Specific Robotic Grasping in Clutter [52.117388513480435]
We present a new dataset named regrad to sustain the modeling of relationships among objects and grasps.
Our dataset is collected in both forms of 2D images and 3D point clouds.
Users are free to import their own object models for the generation of as many data as they want.
arXiv Detail & Related papers (2021-04-29T05:31:21Z) - Bringing the People Back In: Contesting Benchmark Machine Learning
Datasets [11.00769651520502]
We outline a research program - a genealogy of machine learning data - for investigating how and why these datasets have been created.
We describe the ways in which benchmark datasets in machine learning operate as infrastructure and pose four research questions for these datasets.
arXiv Detail & Related papers (2020-07-14T23:22:13Z) - Deflating Dataset Bias Using Synthetic Data Augmentation [8.509201763744246]
State-of-the-art methods for most vision tasks for Autonomous Vehicles (AVs) rely on supervised learning.
The goal of this paper is to investigate the use of targeted synthetic data augmentation for filling gaps in real datasets for vision tasks.
Empirical studies on three different computer vision tasks of practical use to AVs consistently show that having synthetic data in the training mix provides a significant boost in cross-dataset generalization performance.
arXiv Detail & Related papers (2020-04-28T21:56:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.