Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
- URL: http://arxiv.org/abs/2507.22367v1
- Date: Wed, 30 Jul 2025 04:12:14 GMT
- Title: Traits Run Deep: Enhancing Personality Assessment via Psychology-Guided LLM Representations and Multimodal Apparent Behaviors
- Authors: Jia Li, Yichao He, Jiacheng Xu, Tianhao Luo, Zhenzhen Hu, Richang Hong, Meng Wang,
- Abstract summary: We propose a novel personality assessment framework called textittextbfTraits Run Deep.<n>It employs textittextbfpsychology-informed prompts to elicit high-level personality-relevant semantic representations.<n>It devises a textittextbfText-Centric Trait Fusion Network that anchors rich text semantics to align and integrate asynchronous signals from other modalities.
- Score: 46.55948528317124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reliable personality assessment plays a vital role in many fields, such as emotional intelligence, mental health diagnostics, and personalized education. Unlike fleeting emotions, personality traits are stable, often subconsciously leaked through language, facial expressions, and body behaviors, with asynchronous patterns across modalities. It was hard to model personality semantics with traditional superficial features and seemed impossible to achieve effective cross-modal understanding. To address these challenges, we propose a novel personality assessment framework called \textit{\textbf{Traits Run Deep}}. It employs \textit{\textbf{psychology-informed prompts}} to elicit high-level personality-relevant semantic representations. Besides, it devises a \textit{\textbf{Text-Centric Trait Fusion Network}} that anchors rich text semantics to align and integrate asynchronous signals from other modalities. To be specific, such fusion module includes a Chunk-Wise Projector to decrease dimensionality, a Cross-Modal Connector and a Text Feature Enhancer for effective modality fusion and an ensemble regression head to improve generalization in data-scarce situations. To our knowledge, we are the first to apply personality-specific prompts to guide large language models (LLMs) in extracting personality-aware semantics for improved representation quality. Furthermore, extracting and fusing audio-visual apparent behavior features further improves the accuracy. Experimental results on the AVI validation set have demonstrated the effectiveness of the proposed components, i.e., approximately a 45\% reduction in mean squared error (MSE). Final evaluations on the test set of the AVI Challenge 2025 confirm our method's superiority, ranking first in the Personality Assessment track. The source code will be made available at https://github.com/MSA-LMC/TraitsRunDeep.
Related papers
- Spotting Out-of-Character Behavior: Atomic-Level Evaluation of Persona Fidelity in Open-Ended Generation [16.76995815742803]
We propose an atomic-level evaluation framework that quantifies persona fidelity at a finer granularity.<n>Our three key metrics measure the degree of persona alignment and consistency within and across generations.<n>By analyzing persona fidelity across diverse tasks and personality types, we reveal how task structure and persona desirability influence model adaptability.
arXiv Detail & Related papers (2025-06-24T06:33:10Z) - Neuron-based Personality Trait Induction in Large Language Models [115.08894603023712]
Large language models (LLMs) have become increasingly proficient at simulating various personality traits.
We present a neuron-based approach for personality trait induction in LLMs.
arXiv Detail & Related papers (2024-10-16T07:47:45Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - LLMvsSmall Model? Large Language Model Based Text Augmentation Enhanced
Personality Detection Model [58.887561071010985]
Personality detection aims to detect one's personality traits underlying in social media posts.
Most existing methods learn post features directly by fine-tuning the pre-trained language models.
We propose a large language model (LLM) based text augmentation enhanced personality detection model.
arXiv Detail & Related papers (2024-03-12T12:10:18Z) - Personality Style Recognition via Machine Learning: Identifying
Anaclitic and Introjective Personality Styles from Patients' Speech [6.3042597209752715]
We use natural language processing (NLP) and machine learning tools for classification.
We test this on a dataset of recorded clinical diagnostic interviews (CDI) on a sample of 79 patients diagnosed with major depressive disorder (MDD)
We find that automated classification with language-derived features (i.e., based on LIWC) significantly outperforms questionnaire-based classification models.
arXiv Detail & Related papers (2023-11-07T15:56:19Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Editing Personality for Large Language Models [73.59001811199823]
This paper introduces an innovative task focused on editing the personality traits of Large Language Models (LLMs)
We construct PersonalityEdit, a new benchmark dataset to address this task.
arXiv Detail & Related papers (2023-10-03T16:02:36Z) - Personality-aware Human-centric Multimodal Reasoning: A New Task,
Dataset and Baselines [32.82738983843281]
We introduce a new task called Personality-aware Human-centric Multimodal Reasoning (PHMR) (T1)
The goal of the task is to forecast the future behavior of a particular individual using multimodal information from past instances, while integrating personality factors.
The experimental results demonstrate that incorporating personality traits enhances human-centric multimodal reasoning performance.
arXiv Detail & Related papers (2023-04-05T09:09:10Z) - Personality Trait Detection Using Bagged SVM over BERT Word Embedding
Ensembles [10.425280599592865]
We present a novel deep learning-based approach for automated personality detection from text.
We leverage state of the art advances in natural language understanding, namely the BERT language model to extract contextualized word embeddings.
Our model outperforms the previous state of the art by 1.04% and, at the same time is significantly more computationally efficient to train.
arXiv Detail & Related papers (2020-10-03T09:25:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.