論文の概要: Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
- arxiv url: http://arxiv.org/abs/2507.22467v1
- Date: Wed, 30 Jul 2025 08:14:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:18.092208
- Title: Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
- Title(参考訳): LLMに基づくマルチエージェントによる社会影響動態のシミュレーションに向けて
- Authors: Hsien-Tsung Lin, Pei-Cing Huang, Chan-Tung Ku, Chan Hsu, Pei-Xuan Shieh, Yihuang Kang,
- Abstract要約: マルチエージェントシミュレーションがオンラインフォーラムで観察される中核的な人間の社会動態を再現できるかどうかを検討する。
その結果,より小さなモデルの方が適合度が高く,推理に最適化されたモデルの方が社会的影響に強いことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models offer promising capabilities to simulate complex human social interactions. We investigate whether LLM-based multi-agent simulations can reproduce core human social dynamics observed in online forums. We evaluate conformity dynamics, group polarization, and fragmentation across different model scales and reasoning capabilities using a structured simulation framework. Our findings indicate that smaller models exhibit higher conformity rates, whereas models optimized for reasoning are more resistant to social influence.
- Abstract(参考訳): 大規模言語モデルの最近の進歩は、複雑な人間の社会的相互作用をシミュレートする有望な能力を提供する。
LLMに基づくマルチエージェントシミュレーションは,オンラインフォーラムで見られるコアヒューマン・ソーシャル・ダイナミクスを再現できるかどうかを検討する。
構造化シミュレーションフレームワークを用いて, モデルスケールや推論能力にまたがる適合性ダイナミクス, グループ分極, フラグメンテーションを評価した。
以上の結果から,より小さなモデルの方が適合度が高く,推理に最適化されたモデルの方が社会的影響に強いことが示唆された。
関連論文リスト
- DynamiX: Large-Scale Dynamic Social Network Simulator [101.65679342680542]
DynamiXは、動的ソーシャルネットワークモデリングに特化した新しい大規模ソーシャルネットワークシミュレータである。
世論のリーダーに対しては、情報ストリームに基づくリンク予測手法を提案し、同様の姿勢で潜在的ユーザを推薦する。
一般ユーザに対しては,不等式指向の行動決定モジュールを構築する。
論文 参考訳(メタデータ) (2025-07-26T12:13:30Z) - Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
本稿では,人間の認知の重要な側面を再現する大規模言語モデルの能力に関する最近の知見をレビューする。
第2部はマルチエージェント・シミュレーション・フレームワークにおけるLLMの新しい応用について調査している。
この論文は、従来のエージェントベースモデリングプラットフォームにLLMを統合するハイブリッドアプローチを提唱することで締めくくっている。
論文 参考訳(メタデータ) (2025-07-25T15:15:35Z) - Modeling Earth-Scale Human-Like Societies with One Billion Agents [54.465233996410156]
Light Societyはエージェントベースのシミュレーションフレームワークである。
社会的プロセスはエージェントと環境状態の構造的遷移として形式化される。
10億以上のエージェントによる社会の効率的なシミュレーションを支援する。
論文 参考訳(メタデータ) (2025-06-07T09:14:12Z) - SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
本稿では,社会シミュレーションのためのエージェント駆動世界モデルであるSocioVerseを紹介する。
私たちのフレームワークは、4つの強力なアライメントコンポーネントと1000万の実際の個人からなるユーザプールを備えています。
SocioVerseは、多様性、信頼性、代表性を確保しつつ、大規模な人口動態を反映できることを示した。
論文 参考訳(メタデータ) (2025-04-14T12:12:52Z) - Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
ソーシャルメディアプラットフォームにおけるエコーチャンバーの台頭は、分極と既存の信念の強化に対する懸念を高めている。
エコーチャンバーの形成をシミュレーションするための従来の手法は、しばしば事前定義された規則や数値シミュレーションに依存してきた。
本稿では,大言語モデル(LLM)を生成エージェントとして活用し,エコーチャンバー力学をシミュレートする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-25T12:05:11Z) - Sense and Sensitivity: Evaluating the simulation of social dynamics via Large Language Models [27.313165173789233]
大規模言語モデルは、社会力学をシミュレートする古典的エージェントベースモデル(ABM)の強力な代替物として提案されている。
しかし、LLMのブラックボックスの性質から、LLMエージェントが実際に意図した意味論を実行するかどうかは不明である。
目的とする力学を近似するプロンプトを設計することは可能であるが、これらのシミュレーションの品質はプロンプトの特定の選択に非常に敏感である。
論文 参考訳(メタデータ) (2024-12-06T14:50:01Z) - Social Opinions Prediction Utilizes Fusing Dynamics Equation with LLM-based Agents [6.1923703280119105]
本研究では, Fusing Dynamics Equation-Large Language Model (FDE-LLM) アルゴリズムを提案する。
この革新的なアプローチは、大規模言語モデルにおける意見の行動と進化を、ソーシャルネットワーク上の実世界のデータと整合させる。
我々のアルゴリズムは、時間とともに意見の崩壊と回復を正確にシミュレートする。
論文 参考訳(メタデータ) (2024-09-13T11:02:28Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
データ構築とモデルチューニングを改善するためのフレームワークPersLLMを提案する。
データ利用が不十分な場合には、Chain-of-Thoughtプロンプトやアンチインダクションといった戦略を取り入れます。
厳密な振舞いパターンを設計し,モデルの性格の特異性とダイナミズムを高めるために自動DPOを導入する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。