Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
- URL: http://arxiv.org/abs/2507.22467v1
- Date: Wed, 30 Jul 2025 08:14:40 GMT
- Title: Towards Simulating Social Influence Dynamics with LLM-based Multi-agents
- Authors: Hsien-Tsung Lin, Pei-Cing Huang, Chan-Tung Ku, Chan Hsu, Pei-Xuan Shieh, Yihuang Kang,
- Abstract summary: We investigate whether multi-agent simulations can reproduce core human social dynamics observed in online forums.<n>Our findings indicate that smaller models exhibit higher conformity rates, whereas models optimized for reasoning are more resistant to social influence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in Large Language Models offer promising capabilities to simulate complex human social interactions. We investigate whether LLM-based multi-agent simulations can reproduce core human social dynamics observed in online forums. We evaluate conformity dynamics, group polarization, and fragmentation across different model scales and reasoning capabilities using a structured simulation framework. Our findings indicate that smaller models exhibit higher conformity rates, whereas models optimized for reasoning are more resistant to social influence.
Related papers
- DynamiX: Large-Scale Dynamic Social Network Simulator [101.65679342680542]
DynamiX is a novel large-scale social network simulator dedicated to dynamic social network modeling.<n>For opinion leaders, we propose an information-stream-based link prediction method recommending potential users with similar stances.<n>For ordinary users, we construct an inequality-oriented behavior decision-making module.
arXiv Detail & Related papers (2025-07-26T12:13:30Z) - Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
The paper reviews recent findings on the ability of Large Language Models to replicate key aspects of human cognition.<n>The second part surveys emerging applications of LLMs in multi-agent simulation frameworks.<n>The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms.
arXiv Detail & Related papers (2025-07-25T15:15:35Z) - Modeling Earth-Scale Human-Like Societies with One Billion Agents [54.465233996410156]
Light Society is an agent-based simulation framework.<n>It formalizes social processes as structured transitions of agent and environment states.<n>It supports efficient simulation of societies with over one billion agents.
arXiv Detail & Related papers (2025-06-07T09:14:12Z) - SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.<n>Our framework features four powerful alignment components and a user pool of 10 million real individuals.<n>Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
The rise of echo chambers on social media platforms has heightened concerns about polarization and the reinforcement of existing beliefs.<n>Traditional approaches for simulating echo chamber formation have often relied on predefined rules and numerical simulations.<n>We present a novel framework that leverages large language models (LLMs) as generative agents to simulate echo chamber dynamics.
arXiv Detail & Related papers (2025-02-25T12:05:11Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.<n>We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.<n>In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - Sense and Sensitivity: Evaluating the simulation of social dynamics via Large Language Models [27.313165173789233]
Large language models have been proposed as a powerful replacement for classical agent-based models (ABMs) to simulate social dynamics.<n>However, due to the black box nature of LLMs, it is unclear whether LLM agents actually execute the intended semantics.<n>We show that while it is possible to engineer prompts that approximate the intended dynamics, the quality of these simulations is highly sensitive to the particular choice of prompts.
arXiv Detail & Related papers (2024-12-06T14:50:01Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.<n>Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.<n>We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - GenSim: A General Social Simulation Platform with Large Language Model based Agents [111.00666003559324]
We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.<n>Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.<n>To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
arXiv Detail & Related papers (2024-10-06T05:02:23Z) - Social Opinions Prediction Utilizes Fusing Dynamics Equation with LLM-based Agents [6.1923703280119105]
This study proposes the Fusing Dynamics Equation-Large Language Model (FDE-LLM) algorithm.<n>This innovative approach aligns the actions and evolution of opinions in Large Language Models with the real-world data on social networks.<n>Our algorithm accurately simulates the decay and recovery of opinions over time.
arXiv Detail & Related papers (2024-09-13T11:02:28Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
We propose PersLLM, a framework for better data construction and model tuning.<n>For insufficient data usage, we incorporate strategies such as Chain-of-Thought prompting and anti-induction.<n>For rigid behavior patterns, we design the tuning process and introduce automated DPO to enhance the specificity and dynamism of the models' personalities.
arXiv Detail & Related papers (2024-07-17T08:13:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.