GenSim: A General Social Simulation Platform with Large Language Model based Agents
- URL: http://arxiv.org/abs/2410.04360v3
- Date: Fri, 04 Jul 2025 03:07:07 GMT
- Title: GenSim: A General Social Simulation Platform with Large Language Model based Agents
- Authors: Jiakai Tang, Heyang Gao, Xuchen Pan, Lei Wang, Haoran Tan, Dawei Gao, Yushuo Chen, Xu Chen, Yankai Lin, Yaliang Li, Bolin Ding, Jingren Zhou, Jun Wang, Ji-Rong Wen,
- Abstract summary: We propose a novel large language model (LLMs)-based simulation platform called textitGenSim.<n>Our platform supports one hundred thousand agents to better simulate large-scale populations in real-world contexts.<n>To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform.
- Score: 111.00666003559324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of large language models (LLMs), recent years have witnessed many promising studies on leveraging LLM-based agents to simulate human social behavior. While prior work has demonstrated significant potential across various domains, much of it has focused on specific scenarios involving a limited number of agents and has lacked the ability to adapt when errors occur during simulation. To overcome these limitations, we propose a novel LLM-agent-based simulation platform called \textit{GenSim}, which: (1) \textbf{Abstracts a set of general functions} to simplify the simulation of customized social scenarios; (2) \textbf{Supports one hundred thousand agents} to better simulate large-scale populations in real-world contexts; (3) \textbf{Incorporates error-correction mechanisms} to ensure more reliable and long-term simulations. To evaluate our platform, we assess both the efficiency of large-scale agent simulations and the effectiveness of the error-correction mechanisms. To our knowledge, GenSim represents an initial step toward a general, large-scale, and correctable social simulation platform based on LLM agents, promising to further advance the field of social science.
Related papers
- SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model [88.04128601981145]
We introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning.<n>modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation.<n>World-model-based planning, in particular, shows consistent advantage of up to 124% over autoregressive planning.
arXiv Detail & Related papers (2025-07-31T17:57:20Z) - Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
The paper reviews recent findings on the ability of Large Language Models to replicate key aspects of human cognition.<n>The second part surveys emerging applications of LLMs in multi-agent simulation frameworks.<n>The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms.
arXiv Detail & Related papers (2025-07-25T15:15:35Z) - LLM-Based Social Simulations Require a Boundary [3.351170542925928]
This position paper argues that large language model (LLM)-based social simulations should establish clear boundaries.<n>We examine three key boundary problems: alignment (simulated behaviors matching real-world patterns), consistency (maintaining coherent agent behavior over time), and robustness.
arXiv Detail & Related papers (2025-06-24T17:14:47Z) - Modeling Earth-Scale Human-Like Societies with One Billion Agents [54.465233996410156]
Light Society is an agent-based simulation framework.<n>It formalizes social processes as structured transitions of agent and environment states.<n>It supports efficient simulation of societies with over one billion agents.
arXiv Detail & Related papers (2025-06-07T09:14:12Z) - YuLan-OneSim: Towards the Next Generation of Social Simulator with Large Language Models [50.86336063222539]
We introduce a novel social simulator called YuLan-OneSim.<n>Users can simply describe and refine their simulation scenarios through natural language interactions with our simulator.<n>We implement 50 default simulation scenarios spanning 8 domains, including economics, sociology, politics, psychology, organization, demographics, law, and communication.
arXiv Detail & Related papers (2025-05-12T14:05:17Z) - SocioVerse: A World Model for Social Simulation Powered by LLM Agents and A Pool of 10 Million Real-World Users [70.02370111025617]
We introduce SocioVerse, an agent-driven world model for social simulation.
Our framework features four powerful alignment components and a user pool of 10 million real individuals.
Results demonstrate that SocioVerse can reflect large-scale population dynamics while ensuring diversity, credibility, and representativeness.
arXiv Detail & Related papers (2025-04-14T12:12:52Z) - LMAgent: A Large-scale Multimodal Agents Society for Multi-user Simulation [66.52371505566815]
Large language models (LLMs)-based AI agents have made significant progress, enabling them to achieve human-like intelligence.
We present LMAgent, a very large-scale and multimodal agents society based on multimodal LLMs.
In LMAgent, besides chatting with friends, the agents can autonomously browse, purchase, and review products, even perform live streaming e-commerce.
arXiv Detail & Related papers (2024-12-12T12:47:09Z) - From Individual to Society: A Survey on Social Simulation Driven by Large Language Model-based Agents [47.935533238820334]
Traditional sociological research often relies on human participation, which, though effective, is expensive, challenging to scale, and with ethical concerns.
Recent advancements in large language models (LLMs) highlight their potential to simulate human behavior, enabling the replication of individual responses and facilitating studies on many interdisciplinary studies.
We categorize the simulations into three types: (1) Individual Simulation, which mimics specific individuals or demographic groups; (2) Scenario Simulation, where multiple agents collaborate to achieve goals within specific contexts; and (3) Simulation Society, which models interactions within agent societies to reflect the complexity and variety of real-world dynamics.
arXiv Detail & Related papers (2024-12-04T18:56:37Z) - OASIS: Open Agent Social Interaction Simulations with One Million Agents [147.2538500202457]
We propose a scalable social media simulator based on real-world social media platforms.
OASIS supports large-scale user simulations capable of modeling up to one million users.
We replicate various social phenomena, including information spreading, group polarization, and herd effects across X and Reddit platforms.
arXiv Detail & Related papers (2024-11-18T13:57:35Z) - AI Metropolis: Scaling Large Language Model-based Multi-Agent Simulation with Out-of-order Execution [15.596642151634319]
AI Metropolis is a simulation engine that improves the efficiency of LLM agent simulations by incorporating out-of-order execution scheduling.
Our evaluations demonstrate that AI Metropolis achieves speedups from 1.3x to 4.15x over standard parallel simulation with global synchronization.
arXiv Detail & Related papers (2024-11-05T21:54:14Z) - Synergistic Simulations: Multi-Agent Problem Solving with Large Language Models [36.571597246832326]
Large Language Models (LLMs) have increasingly demonstrated the ability to facilitate the development of multi-agent systems.
This paper aims to integrate agents & world interaction into a single simulation where multiple agents can work together to solve a problem.
We implement two simulations: a physical studio apartment with two roommates, and another where agents collaborate to complete a programming task.
arXiv Detail & Related papers (2024-09-14T21:53:35Z) - On the limits of agency in agent-based models [13.130587222524305]
Agent-based modeling offers powerful insights into complex systems, but its practical utility has been limited by computational constraints.
Recent advancements in large language models (LLMs) could enhance ABMs with adaptive agents, but their integration into large-scale simulations remains challenging.
We present LLM archetypes, a technique that balances behavioral complexity with computational efficiency, allowing for nuanced agent behavior in large-scale simulations.
arXiv Detail & Related papers (2024-09-14T04:17:24Z) - Sparse Rewards Can Self-Train Dialogue Agents [22.799506097310008]
We introduce a novel self-improvement paradigm that empowers LLM agents to autonomously enhance their performance without external human feedback.
We present ToolWOZ, a sparse reward tool-calling simulation environment derived from MultiWOZ.
We demonstrate that models trained with JOSH, both small and frontier, significantly improve tool-based interactions while preserving general model capabilities across diverse benchmarks.
arXiv Detail & Related papers (2024-09-06T21:00:57Z) - LLM-Augmented Agent-Based Modelling for Social Simulations: Challenges and Opportunities [0.0]
Integrating large language models with agent-based simulations offers a transformational potential for understanding complex social systems.
We explore architectures and methods to systematically develop LLM-augmented social simulations.
We conclude that integrating LLMs with agent-based simulations offers a powerful toolset for researchers and scientists.
arXiv Detail & Related papers (2024-05-08T08:57:54Z) - BASES: Large-scale Web Search User Simulation with Large Language Model
based Agents [108.97507653131917]
BASES is a novel user simulation framework with large language models (LLMs)
Our simulation framework can generate unique user profiles at scale, which subsequently leads to diverse search behaviors.
WARRIORS is a new large-scale dataset encompassing web search user behaviors, including both Chinese and English versions.
arXiv Detail & Related papers (2024-02-27T13:44:09Z) - User Behavior Simulation with Large Language Model based Agents [116.74368915420065]
We propose an LLM-based agent framework and design a sandbox environment to simulate real user behaviors.
Based on extensive experiments, we find that the simulated behaviors of our method are very close to the ones of real humans.
arXiv Detail & Related papers (2023-06-05T02:58:35Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS) is a framework for learning AI policies that are robust to such multiagent sim-to-real gaps.
ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
In particular, ERMAS learns tax policies that are robust to changes in agent risk aversion, improving social welfare by up to 15% in complextemporal simulations.
arXiv Detail & Related papers (2021-06-10T04:32:20Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.