Visual Language Models as Zero-Shot Deepfake Detectors
- URL: http://arxiv.org/abs/2507.22469v1
- Date: Wed, 30 Jul 2025 08:20:02 GMT
- Title: Visual Language Models as Zero-Shot Deepfake Detectors
- Authors: Viacheslav Pirogov,
- Abstract summary: We propose a novel approach to image classification and then evaluate it for deepfake detection.<n>Inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The contemporary phenomenon of deepfakes, utilizing GAN or diffusion models for face swapping, presents a substantial and evolving threat in digital media, identity verification, and a multitude of other systems. The majority of existing methods for detecting deepfakes rely on training specialized classifiers to distinguish between genuine and manipulated images, focusing only on the image domain without incorporating any auxiliary tasks that could enhance robustness. In this paper, inspired by the zero-shot capabilities of Vision Language Models, we propose a novel VLM-based approach to image classification and then evaluate it for deepfake detection. Specifically, we utilize a new high-quality deepfake dataset comprising 60,000 images, on which our zero-shot models demonstrate superior performance to almost all existing methods. Subsequently, we compare the performance of the best-performing architecture, InstructBLIP, on the popular deepfake dataset DFDC-P against traditional methods in two scenarios: zero-shot and in-domain fine-tuning. Our results demonstrate the superiority of VLMs over traditional classifiers.
Related papers
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE) is a novel embedding space specifically designed for deepfake detection.
CoDE is trained via contrastive learning by additionally enforcing global-local similarities.
arXiv Detail & Related papers (2024-07-29T18:00:10Z) - Robust CLIP-Based Detector for Exposing Diffusion Model-Generated Images [13.089550724738436]
Diffusion models (DMs) have revolutionized image generation, producing high-quality images with applications spanning various fields.
Their ability to create hyper-realistic images poses significant challenges in distinguishing between real and synthetic content.
This work introduces a robust detection framework that integrates image and text features extracted by CLIP model with a Multilayer Perceptron (MLP) classifier.
arXiv Detail & Related papers (2024-04-19T14:30:41Z) - AntifakePrompt: Prompt-Tuned Vision-Language Models are Fake Image Detectors [24.78672820633581]
Deep generative models can create remarkably fake images while raising concerns about misinformation and copyright infringement.
Deepfake detection technique is developed to distinguish between real and fake images.
We propose a novel approach called AntifakePrompt, using Vision-Language Models and prompt tuning techniques.
arXiv Detail & Related papers (2023-10-26T14:23:45Z) - Quality-Agnostic Deepfake Detection with Intra-model Collaborative
Learning [26.517887637150594]
Deepfake has recently raised a plethora of societal concerns over its possible security threats and dissemination of fake information.
Most SOTA approaches are limited by using a single specific model for detecting certain deepfake video quality type.
We propose a universal intra-model collaborative learning framework to enable the effective and simultaneous detection of different quality of deepfakes.
arXiv Detail & Related papers (2023-09-12T02:01:31Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
We propose a deep convolutional Transformer to incorporate decisive image features both locally and globally.
Specifically, we apply convolutional pooling and re-attention to enrich the extracted features and enhance efficacy.
The proposed solution consistently outperforms several state-of-the-art baselines on both within- and cross-dataset experiments.
arXiv Detail & Related papers (2022-09-12T15:05:41Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
forged images generated by Deepfake techniques pose a serious threat to the trustworthiness of digital information.
In this paper, we aim to capture the subtle manipulation artifacts at different scales for Deepfake detection.
We introduce a high-quality Deepfake dataset, SR-DF, which consists of 4,000 DeepFake videos generated by state-of-the-art face swapping and facial reenactment methods.
arXiv Detail & Related papers (2021-04-20T05:43:44Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
We focus on the analysis of Deepfakes of human faces with the objective of creating a new detection method.
The proposed technique, by means of an Expectation Maximization (EM) algorithm, extracts a set of local features specifically addressed to model the underlying convolutional generative process.
Results demonstrated the effectiveness of the technique in distinguishing the different architectures and the corresponding generation process.
arXiv Detail & Related papers (2020-04-22T09:02:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.