HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
- URL: http://arxiv.org/abs/2507.22530v2
- Date: Thu, 31 Jul 2025 03:01:47 GMT
- Title: HRVVS: A High-resolution Video Vasculature Segmentation Network via Hierarchical Autoregressive Residual Priors
- Authors: Xincheng Yao, Yijun Yang, Kangwei Guo, Ruiqiang Xiao, Haipeng Zhou, Haisu Tao, Jian Yang, Lei Zhu,
- Abstract summary: We introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames.<n>We propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS.<n>Our proposed HRVVS significantly outperforms the state-of-the-art methods.
- Score: 18.951871257229055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The segmentation of the hepatic vasculature in surgical videos holds substantial clinical significance in the context of hepatectomy procedures. However, owing to the dearth of an appropriate dataset and the inherently complex task characteristics, few researches have been reported in this domain. To address this issue, we first introduce a high quality frame-by-frame annotated hepatic vasculature dataset containing 35 long hepatectomy videos and 11442 high-resolution frames. On this basis, we propose a novel high-resolution video vasculature segmentation network, dubbed as HRVVS. We innovatively embed a pretrained visual autoregressive modeling (VAR) model into different layers of the hierarchical encoder as prior information to reduce the information degradation generated during the downsampling process. In addition, we designed a dynamic memory decoder on a multi-view segmentation network to minimize the transmission of redundant information while preserving more details between frames. Extensive experiments on surgical video datasets demonstrate that our proposed HRVVS significantly outperforms the state-of-the-art methods. The source code and dataset will be publicly available at \{https://github.com/scott-yjyang/HRVVS}.
Related papers
- MSNeRV: Neural Video Representation with Multi-Scale Feature Fusion [27.621656985302973]
Implicit Neural representations (INRs) have emerged as a promising approach for video compression.<n>Existing INR-based methods struggle to effectively represent detail-intensive and fast-changing video content.<n>We propose a multi-scale feature fusion framework, MSNeRV, for neural video representation.
arXiv Detail & Related papers (2025-06-18T08:57:12Z) - Video Set Distillation: Information Diversification and Temporal Densification [68.85010825225528]
Video textbfsets have two dimensions of redundancies: within-sample and inter-sample redundancies.<n>We are the first to study Video Set Distillation, which synthesizes optimized video data by addressing within-sample and inter-sample redundancies.
arXiv Detail & Related papers (2024-11-28T05:37:54Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Arbitrary-Scale Video Super-Resolution with Structural and Textural Priors [80.92195378575671]
We describe a strong baseline for Arbitra-scale super-resolution (AVSR)
We then introduce ST-AVSR by equipping our baseline with a multi-scale structural and textural prior computed from the pre-trained VGG network.
Comprehensive experiments show that ST-AVSR significantly improves super-resolution quality, generalization ability, and inference speed over the state-of-theart.
arXiv Detail & Related papers (2024-07-13T15:27:39Z) - DeNVeR: Deformable Neural Vessel Representations for Unsupervised Video Vessel Segmentation [3.1977656204331684]
Deformable Neural Vessel Representations (DeNVeR) is an unsupervised approach for vessel segmentation in X-ray angiography videos without annotated ground truth.<n>Key contributions include a novel layer bootstrapping technique, a parallel vessel motion loss, and the integration of Eulerian motion fields for modeling complex vessel dynamics.
arXiv Detail & Related papers (2024-06-03T17:59:34Z) - VQ-NeRV: A Vector Quantized Neural Representation for Videos [3.6662666629446043]
Implicit neural representations (INR) excel in encoding videos within neural networks, showcasing promise in computer vision tasks like video compression and denoising.
We introduce an advanced U-shaped architecture, Vector Quantized-NeRV (VQ-NeRV), which integrates a novel component--the VQ-NeRV Block.
This block incorporates a codebook mechanism to discretize the network's shallow residual features and inter-frame residual information effectively.
arXiv Detail & Related papers (2024-03-19T03:19:07Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - Neighbourhood Representative Sampling for Efficient End-to-end Video
Quality Assessment [60.57703721744873]
The increased resolution of real-world videos presents a dilemma between efficiency and accuracy for deep Video Quality Assessment (VQA)
In this work, we propose a unified scheme, spatial-temporal grid mini-cube sampling (St-GMS) to get a novel type of sample, named fragments.
With fragments and FANet, the proposed efficient end-to-end FAST-VQA and FasterVQA achieve significantly better performance than existing approaches on all VQA benchmarks.
arXiv Detail & Related papers (2022-10-11T11:38:07Z) - Video-TransUNet: Temporally Blended Vision Transformer for CT VFSS
Instance Segmentation [11.575821326313607]
We propose Video-TransUNet, a deep architecture for segmentation in medical CT videos constructed by integrating temporal feature blending into the TransUNet deep learning framework.
In particular, our approach amalgamates strong frame representation via a ResNet CNN backbone, multi-frame feature blending via a Temporal Context Module, and reconstructive capabilities for multiple targets via a UNet-based convolutional-deconal architecture with multiple heads.
arXiv Detail & Related papers (2022-08-17T14:28:58Z) - STIP: A SpatioTemporal Information-Preserving and Perception-Augmented
Model for High-Resolution Video Prediction [78.129039340528]
We propose a Stemporal Information-Preserving and Perception-Augmented Model (STIP) to solve the above two problems.
The proposed model aims to preserve thetemporal information for videos during the feature extraction and the state transitions.
Experimental results show that the proposed STIP can predict videos with more satisfactory visual quality compared with a variety of state-of-the-art methods.
arXiv Detail & Related papers (2022-06-09T09:49:04Z) - GAN-Based Multi-View Video Coding with Spatio-Temporal EPI
Reconstruction [19.919826392704472]
We propose a novel multi-view video coding method that leverages the image generation capabilities of Generative Adrial Network (GAN)
At the encoder, we construct atemporal Epipolar Plane Image (EPI) decoder and further utilize a convolutional network to extract the latent code of a GAN as Side Information (SI)
At the side, we combine SI and adjacent viewpoints to reconstruct intermediate views using the GAN generator.
arXiv Detail & Related papers (2022-05-07T08:52:54Z) - Reconstructive Sequence-Graph Network for Video Summarization [107.0328985865372]
Exploiting the inner-shot and inter-shot dependencies is essential for key-shot based video summarization.
We propose a Reconstructive Sequence-Graph Network (RSGN) to encode the frames and shots as sequence and graph hierarchically.
A reconstructor is developed to reward the summary generator, so that the generator can be optimized in an unsupervised manner.
arXiv Detail & Related papers (2021-05-10T01:47:55Z) - Coherent Loss: A Generic Framework for Stable Video Segmentation [103.78087255807482]
We investigate how a jittering artifact degrades the visual quality of video segmentation results.
We propose a Coherent Loss with a generic framework to enhance the performance of a neural network against jittering artifacts.
arXiv Detail & Related papers (2020-10-25T10:48:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.