CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records
- URL: http://arxiv.org/abs/2507.22533v1
- Date: Wed, 30 Jul 2025 10:02:16 GMT
- Title: CliCARE: Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records
- Authors: Dongchen Li, Jitao Liang, Wei Li, Xiaoyu Wang, Longbing Cao, Kun Yu,
- Abstract summary: Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout.<n>We propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records.<n>We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset.
- Score: 30.100759175769454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) hold significant promise for improving clinical decision support and reducing physician burnout by synthesizing complex, longitudinal cancer Electronic Health Records (EHRs). However, their implementation in this critical field faces three primary challenges: the inability to effectively process the extensive length and multilingual nature of patient records for accurate temporal analysis; a heightened risk of clinical hallucination, as conventional grounding techniques such as Retrieval-Augmented Generation (RAG) do not adequately incorporate process-oriented clinical guidelines; and unreliable evaluation metrics that hinder the validation of AI systems in oncology. To address these issues, we propose CliCARE, a framework for Grounding Large Language Models in Clinical Guidelines for Decision Support over Longitudinal Cancer Electronic Health Records. The framework operates by transforming unstructured, longitudinal EHRs into patient-specific Temporal Knowledge Graphs (TKGs) to capture long-range dependencies, and then grounding the decision support process by aligning these real-world patient trajectories with a normative guideline knowledge graph. This approach provides oncologists with evidence-grounded decision support by generating a high-fidelity clinical summary and an actionable recommendation. We validated our framework using large-scale, longitudinal data from a private Chinese cancer dataset and the public English MIMIC-IV dataset. In these diverse settings, CliCARE significantly outperforms strong baselines, including leading long-context LLMs and Knowledge Graph-enhanced RAG methods. The clinical validity of our results is supported by a robust evaluation protocol, which demonstrates a high correlation with assessments made by expert oncologists.
Related papers
- Uncertainty-Driven Expert Control: Enhancing the Reliability of Medical Vision-Language Models [52.2001050216955]
Existing methods aim to enhance the performance of Medical Vision Language Model (MedVLM) by adjusting model structure, fine-tuning with high-quality data, or through preference fine-tuning.<n>We propose an expert-in-the-loop framework named Expert-Controlled-Free Guidance (Expert-CFG) to align MedVLM with clinical expertise without additional training.
arXiv Detail & Related papers (2025-07-12T09:03:30Z) - Refine Medical Diagnosis Using Generation Augmented Retrieval and Clinical Practice Guidelines [16.56254046507092]
We introduce GARMLE-G, a Generation-Augmented Retrieval framework that grounds medical language model outputs in authoritative guidelines.<n>Unlike conventional Retrieval-Augmented Generation based approaches, GARMLE-G enables hallucination-free outputs by directly retrieving authoritative guideline content.<n>A prototype system for hypertension diagnosis was developed and evaluated on multiple metrics, demonstrating superior retrieval precision, semantic relevance, and clinical guideline adherence.
arXiv Detail & Related papers (2025-06-22T11:31:13Z) - A Narrative Review on Large AI Models in Lung Cancer Screening, Diagnosis, and Treatment Planning [8.431488361911754]
Lung cancer remains one of the most prevalent and fatal diseases worldwide.<n>Recent advancements in large AI models have significantly enhanced medical image understanding and clinical decision-making.<n>This review systematically surveys the state-of-the-art in applying large AI models to lung cancer screening, diagnosis, prognosis, and treatment.
arXiv Detail & Related papers (2025-06-08T17:42:24Z) - Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models [70.64969663547703]
AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
arXiv Detail & Related papers (2025-05-30T14:42:02Z) - Expertise Is What We Want [0.0]
We share an application architecture, the Large Language Expert (LLE), that combines the flexibility and power of Large Language Models (LLMs) with the interpretability, explainability, and reliability of Expert Systems.<n>To highlight the power of the Large Language Expert (LLE) system, we built an LLE to assist with the workup of patients newly diagnosed with cancer.
arXiv Detail & Related papers (2025-02-27T18:05:15Z) - HC-LLM: Historical-Constrained Large Language Models for Radiology Report Generation [89.3260120072177]
We propose a novel Historical-Constrained Large Language Models (HC-LLM) framework for Radiology report generation.<n>Our approach extracts both time-shared and time-specific features from longitudinal chest X-rays and diagnostic reports to capture disease progression.<n> Notably, our approach performs well even without historical data during testing and can be easily adapted to other multimodal large models.
arXiv Detail & Related papers (2024-12-15T06:04:16Z) - A Lung Nodule Dataset with Histopathology-based Cancer Type Annotation [12.617587827105496]
This research aims to bridge the gap by providing publicly accessible datasets and reliable tools for medical diagnosis.
We curated a diverse dataset of lung Computed Tomography (CT) images, comprising 330 annotated nodules (nodules are labeled as bounding boxes) from 95 distinct patients.
These promising results demonstrate that the dataset has a feasible application and further facilitate intelligent auxiliary diagnosis.
arXiv Detail & Related papers (2024-06-26T06:39:11Z) - Leveraging Expert Input for Robust and Explainable AI-Assisted Lung Cancer Detection in Chest X-rays [2.380494879018844]
This study examines the interpretability and robustness of a high-performing lung cancer detection model based on InceptionV3.<n>We develop ClinicXAI, an expert-driven approach leveraging the concept bottleneck methodology.
arXiv Detail & Related papers (2024-03-28T14:15:13Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - RECAP-KG: Mining Knowledge Graphs from Raw GP Notes for Remote COVID-19
Assessment in Primary Care [45.43645878061283]
We present a framework that performs knowledge graph construction from raw GP medical notes written during or after patient consultations.
Our knowledge graphs include information about existing patient symptoms, their duration, and their severity.
We apply our framework to consultation notes of COVID-19 patients in the UK.
arXiv Detail & Related papers (2023-06-17T23:35:51Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.