Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models
- URL: http://arxiv.org/abs/2505.24655v1
- Date: Fri, 30 May 2025 14:42:02 GMT
- Title: Adaptable Cardiovascular Disease Risk Prediction from Heterogeneous Data using Large Language Models
- Authors: Frederike Lübeck, Jonas Wildberger, Frederik Träuble, Maximilian Mordig, Sergios Gatidis, Andreas Krause, Bernhard Schölkopf,
- Abstract summary: AdaCVD is an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank.<n>It addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data.
- Score: 70.64969663547703
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cardiovascular disease (CVD) risk prediction models are essential for identifying high-risk individuals and guiding preventive actions. However, existing models struggle with the challenges of real-world clinical practice as they oversimplify patient profiles, rely on rigid input schemas, and are sensitive to distribution shifts. We developed AdaCVD, an adaptable CVD risk prediction framework built on large language models extensively fine-tuned on over half a million participants from the UK Biobank. In benchmark comparisons, AdaCVD surpasses established risk scores and standard machine learning approaches, achieving state-of-the-art performance. Crucially, for the first time, it addresses key clinical challenges across three dimensions: it flexibly incorporates comprehensive yet variable patient information; it seamlessly integrates both structured data and unstructured text; and it rapidly adapts to new patient populations using minimal additional data. In stratified analyses, it demonstrates robust performance across demographic, socioeconomic, and clinical subgroups, including underrepresented cohorts. AdaCVD offers a promising path toward more flexible, AI-driven clinical decision support tools suited to the realities of heterogeneous and dynamic healthcare environments.
Related papers
- An MLI-Guided Framework for Subgroup-Aware Modeling in Electronic Health Records (AdaptHetero) [0.18416014644193068]
AdaptHetero is a novel MLI-driven framework that transforms interpretability insights into actionable guidance.<n> AdaptHetero consistently uncovers heterogeneous model behaviors in predicting ICU mortality, in-hospital death, and hidden hypoxemia.
arXiv Detail & Related papers (2025-07-28T04:37:03Z) - Machine Learning Solutions Integrated in an IoT Healthcare Platform for Heart Failure Risk Stratification [3.952604803580729]
The management of chronic Heart Failure (HF) presents significant challenges in modern healthcare.<n>We present a predictive model founded on Machine Learning (ML) techniques to identify patients at HF risk.
arXiv Detail & Related papers (2025-04-07T14:07:05Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - TCKAN:A Novel Integrated Network Model for Predicting Mortality Risk in Sepsis Patients [0.0]
Sepsis poses a major global health threat, accounting for millions of deaths annually and significant economic costs.
Current methods typically utilize only one type of data--either constant, temporal, or ICD codes.
Time-Constant Kolmogorov-Arnold Network (TCKAN) uniquely integrates temporal data, constant data, and ICD codes within a single predictive model.
arXiv Detail & Related papers (2024-07-09T05:37:50Z) - TACCO: Task-guided Co-clustering of Clinical Concepts and Patient Visits for Disease Subtyping based on EHR Data [42.96821770394798]
TACCO is a novel framework that jointly discovers clusters of clinical concepts and patient visits based on a hypergraph modeling of EHR data.
We conduct experiments on the public MIMIC-III dataset and Emory internal CRADLE dataset over the downstream clinical tasks of phenotype classification and cardiovascular risk prediction.
In-depth model analysis, clustering results analysis, and clinical case studies further validate the improved utilities and insightful interpretations delivered by TACCO.
arXiv Detail & Related papers (2024-06-14T14:18:38Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Neurological Prognostication of Post-Cardiac-Arrest Coma Patients Using
EEG Data: A Dynamic Survival Analysis Framework with Competing Risks [4.487368901635044]
We propose a framework for neurological prognostication of post-cardiac-arrest comatose patients using EEG data.
Our framework uses any dynamic survival analysis model that supports competing risks in the form of estimating patient-level cumulative incidence functions.
We demonstrate our framework by benchmarking three existing dynamic survival analysis models that support competing risks on a real dataset of 922 patients.
arXiv Detail & Related papers (2023-08-17T03:46:23Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - SANSformers: Self-Supervised Forecasting in Electronic Health Records
with Attention-Free Models [48.07469930813923]
This work aims to forecast the demand for healthcare services, by predicting the number of patient visits to healthcare facilities.
We introduce SANSformer, an attention-free sequential model designed with specific inductive biases to cater for the unique characteristics of EHR data.
Our results illuminate the promising potential of tailored attention-free models and self-supervised pretraining in refining healthcare utilization predictions across various patient demographics.
arXiv Detail & Related papers (2021-08-31T08:23:56Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.