Multilingual Political Views of Large Language Models: Identification and Steering
- URL: http://arxiv.org/abs/2507.22623v1
- Date: Wed, 30 Jul 2025 12:42:35 GMT
- Title: Multilingual Political Views of Large Language Models: Identification and Steering
- Authors: Daniil Gurgurov, Katharina Trinley, Ivan Vykopal, Josef van Genabith, Simon Ostermann, Roberto Zamparelli,
- Abstract summary: Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views.<n>We evaluate seven models across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement.<n>Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families.
- Score: 9.340686908318776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) are increasingly used in everyday tools and applications, raising concerns about their potential influence on political views. While prior research has shown that LLMs often exhibit measurable political biases--frequently skewing toward liberal or progressive positions--key gaps remain. Most existing studies evaluate only a narrow set of models and languages, leaving open questions about the generalizability of political biases across architectures, scales, and multilingual settings. Moreover, few works examine whether these biases can be actively controlled. In this work, we address these gaps through a large-scale study of political orientation in modern open-source instruction-tuned LLMs. We evaluate seven models, including LLaMA-3.1, Qwen-3, and Aya-Expanse, across 14 languages using the Political Compass Test with 11 semantically equivalent paraphrases per statement to ensure robust measurement. Our results reveal that larger models consistently shift toward libertarian-left positions, with significant variations across languages and model families. To test the manipulability of political stances, we utilize a simple center-of-mass activation intervention technique and show that it reliably steers model responses toward alternative ideological positions across multiple languages. Our code is publicly available at https://github.com/d-gurgurov/Political-Ideologies-LLMs.
Related papers
- Democratic or Authoritarian? Probing a New Dimension of Political Biases in Large Language Models [72.89977583150748]
We propose a novel methodology to assess how Large Language Models align with broader geopolitical value systems.<n>We find that LLMs generally favor democratic values and leaders, but exhibit increases favorability toward authoritarian figures when prompted in Mandarin.
arXiv Detail & Related papers (2025-06-15T07:52:07Z) - Only a Little to the Left: A Theory-grounded Measure of Political Bias in Large Language Models [4.8869340671593475]
Political bias in prompt-based language models can affect their performance.<n>We build on survey design principles to test a wide variety of input prompts, while taking into account prompt sensitivity.<n>Measures of political bias are often unstable, but generally more left-leaning for instruction-tuned models.
arXiv Detail & Related papers (2025-03-20T13:51:06Z) - Beyond Partisan Leaning: A Comparative Analysis of Political Bias in Large Language Models [6.549047699071195]
This study adopts a persona-free, topic-specific approach to evaluate political behavior in large language models.<n>We analyze responses from 43 large language models developed in the U.S., Europe, China, and the Middle East.<n>Findings show most models lean center-left or left ideologically and vary in their nonpartisan engagement patterns.
arXiv Detail & Related papers (2024-12-21T19:42:40Z) - Mapping and Influencing the Political Ideology of Large Language Models using Synthetic Personas [5.237116285113809]
We map the political distribution of persona-based prompted large language models using the Political Compass Test (PCT)<n>Our experiments reveal that synthetic personas predominantly cluster in the left-libertarian quadrant, with models demonstrating varying degrees of responsiveness when prompted with explicit ideological descriptors.<n>While all models demonstrate significant shifts towards right-authoritarian positions, they exhibit more limited shifts towards left-libertarian positions, suggesting an asymmetric response to ideological manipulation that may reflect inherent biases in model training.
arXiv Detail & Related papers (2024-12-19T13:36:18Z) - Large Language Models Reflect the Ideology of their Creators [71.65505524599888]
Large language models (LLMs) are trained on vast amounts of data to generate natural language.<n>This paper shows that the ideological stance of an LLM appears to reflect the worldview of its creators.
arXiv Detail & Related papers (2024-10-24T04:02:30Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
This study seeks to identify and quantify biases in simulating political samples with Large Language Models.
Using the GPT-3.5-Turbo model, we leverage data from the American National Election Studies, German Longitudinal Election Study, Zuobiao dataset, and China Family Panel Studies.
arXiv Detail & Related papers (2024-07-16T05:52:26Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
We investigate the political orientation of Large Language Models (LLMs) across a spectrum of eight polarizing topics.
Our investigation delves into the political alignment of LLMs across a spectrum of eight polarizing topics, spanning from abortion to LGBTQ issues.
The findings suggest that users should be mindful when crafting queries, and exercise caution in selecting neutral prompt language.
arXiv Detail & Related papers (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
We challenge the prevailing constrained evaluation paradigm for values and opinions in large language models.
We show that models give substantively different answers when not forced.
We distill these findings into recommendations and open challenges in evaluating values and opinions in LLMs.
arXiv Detail & Related papers (2024-02-26T18:00:49Z) - Quantifying Gender Bias Towards Politicians in Cross-Lingual Language
Models [104.41668491794974]
We quantify the usage of adjectives and verbs generated by language models surrounding the names of politicians as a function of their gender.
We find that while some words such as dead, and designated are associated with both male and female politicians, a few specific words such as beautiful and divorced are predominantly associated with female politicians.
arXiv Detail & Related papers (2021-04-15T15:03:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.