論文の概要: Zero-Shot Image Anomaly Detection Using Generative Foundation Models
- arxiv url: http://arxiv.org/abs/2507.22692v1
- Date: Wed, 30 Jul 2025 13:56:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:18.245752
- Title: Zero-Shot Image Anomaly Detection Using Generative Foundation Models
- Title(参考訳): 生成基礎モデルを用いたゼロショット画像異常検出
- Authors: Lemar Abdi, Amaan Valiuddin, Francisco Caetano, Christiaan Viviers, Fons van der Sommen,
- Abstract要約: 本研究は,意味的異常検出のための基礎的ツールとしてスコアベース生成モデルの利用について検討する。
スタインスコアの誤差を解析することにより,各ターゲットデータセットの再学習を必要とせず,異常サンプルを識別する新しい手法を提案する。
このアプローチは最先端よりも改善され、ひとつのデータセット — CelebA -- 上で単一のモデルをトレーニングすることに依存しています。
- 参考スコア(独自算出の注目度): 2.241618130319058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting out-of-distribution (OOD) inputs is pivotal for deploying safe vision systems in open-world environments. We revisit diffusion models, not as generators, but as universal perceptual templates for OOD detection. This research explores the use of score-based generative models as foundational tools for semantic anomaly detection across unseen datasets. Specifically, we leverage the denoising trajectories of Denoising Diffusion Models (DDMs) as a rich source of texture and semantic information. By analyzing Stein score errors, amplified through the Structural Similarity Index Metric (SSIM), we introduce a novel method for identifying anomalous samples without requiring re-training on each target dataset. Our approach improves over state-of-the-art and relies on training a single model on one dataset -- CelebA -- which we find to be an effective base distribution, even outperforming more commonly used datasets like ImageNet in several settings. Experimental results show near-perfect performance on some benchmarks, with notable headroom on others, highlighting both the strength and future potential of generative foundation models in anomaly detection.
- Abstract(参考訳): アウト・オブ・ディストリビューション(OOD)インプットの検出は、オープンワールド環境で安全な視覚システムをデプロイする上で重要である。
我々は、ジェネレータではなく、OOD検出のための普遍的な知覚テンプレートとして拡散モデルを再検討する。
本研究では,未知のデータセットを横断する意味的異常検出のための基礎的ツールとしてスコアベース生成モデルを用いる方法について検討する。
具体的には,DDM(Denoising Diffusion Models)の認知軌跡を,テクスチャや意味情報の豊富な情報源として活用する。
構造類似度指標(Structuor similarity Index Metric, SSIM)で増幅されたスタインスコア誤差を解析することにより, 各ターゲットデータセットの再トレーニングを必要とせず, 異常サンプルを識別する新しい手法を提案する。
このアプローチは最先端よりも改善され、1つのデータセット(CelebA)で1つのモデルをトレーニングすることに依存しています。
実験の結果,いくつかのベンチマークではほぼ完全な性能を示し,他のベンチマークでは顕著な評価が得られ,異常検出における生成基盤モデルの強さと将来の可能性を強調した。
関連論文リスト
- Ensemble-Based Deepfake Detection using State-of-the-Art Models with Robust Cross-Dataset Generalisation [0.0]
機械学習ベースのDeepfake検出モデルは、ベンチマークデータセットで印象的な結果を得た。
しかし、アウト・オブ・ディストリビューションデータで評価すると、その性能は著しく低下することが多い。
本研究では,ディープフェイク検出システムの一般化のためのアンサンブルに基づくアプローチについて検討する。
論文 参考訳(メタデータ) (2025-07-08T13:54:48Z) - CLIP Meets Diffusion: A Synergistic Approach to Anomaly Detection [54.85000884785013]
異常検出は、異常の定義の曖昧さ、異常型の多様性、トレーニングデータの不足による複雑な問題である。
識別的基盤モデルと生成的基礎モデルの両方を活用するCLIPfusionを提案する。
本手法は, 異常検出の多面的課題に対処する上で, マルチモーダル・マルチモデル融合の有効性を裏付けるものである。
論文 参考訳(メタデータ) (2025-06-13T13:30:15Z) - AssemAI: Interpretable Image-Based Anomaly Detection for Manufacturing Pipelines [0.0]
製造パイプラインにおける異常検出は、産業環境の複雑さと変動性によって強化され、依然として重要な課題である。
本稿では,スマート製造パイプラインに適した解釈可能な画像ベース異常検出システムAssemAIを紹介する。
論文 参考訳(メタデータ) (2024-08-05T01:50:09Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - SatDM: Synthesizing Realistic Satellite Image with Semantic Layout
Conditioning using Diffusion Models [0.0]
Denoising Diffusion Probabilistic Models (DDPM) は意味的レイアウトから現実的なイメージを合成する上で大きな可能性を証明している。
本稿では,セマンティックマップを用いて高品質で多様な衛星画像を生成する条件付きDDPMモデルを提案する。
提案モデルの有効性は,本研究の文脈内で導入した詳細なラベル付きデータセットを用いて検証する。
論文 参考訳(メタデータ) (2023-09-28T19:39:13Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Denoising diffusion models for out-of-distribution detection [2.113925122479677]
我々は,確率拡散モデル(DDPM)を自己エンコーダの復号化として活用する。
DDPMを用いてノイズレベルの範囲の入力を再構成し,結果の多次元再構成誤差を用いてアウト・オブ・ディストリビューション入力を分類する。
論文 参考訳(メタデータ) (2022-11-14T20:35:11Z) - DDPM-CD: Denoising Diffusion Probabilistic Models as Feature Extractors
for Change Detection [31.125812018296127]
Deno Diffusion Probabilistic Model (DDPM) の事前学習による変化検出のための新しいアプローチを提案する。
DDPMは、訓練画像を徐々にマルコフ連鎖を用いてガウス分布に変換することにより、トレーニングデータ分布を学習する。
推論(サンプリング)中に、トレーニング分布に近い多様なサンプルセットを生成することができる。
LEVIR-CD, WHU-CD, DSIFN-CD, CDDデータセットを用いて行った実験により,提案手法は既存の変化検出法よりもF1スコアで大幅に優れており, I。
論文 参考訳(メタデータ) (2022-06-23T17:58:29Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。