Social-Pose: Enhancing Trajectory Prediction with Human Body Pose
- URL: http://arxiv.org/abs/2507.22742v1
- Date: Wed, 30 Jul 2025 14:58:48 GMT
- Title: Social-Pose: Enhancing Trajectory Prediction with Human Body Pose
- Authors: Yang Gao, Saeed Saadatnejad, Alexandre Alahi,
- Abstract summary: We study the benefits of predicting human trajectories using human body poses instead of solely their Cartesian space locations in time.<n>We propose Social-pose', an attention-based pose encoder that effectively captures the poses of all humans in a scene and their social relations.
- Score: 70.59399670794171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate human trajectory prediction is one of the most crucial tasks for autonomous driving, ensuring its safety. Yet, existing models often fail to fully leverage the visual cues that humans subconsciously communicate when navigating the space. In this work, we study the benefits of predicting human trajectories using human body poses instead of solely their Cartesian space locations in time. We propose `Social-pose', an attention-based pose encoder that effectively captures the poses of all humans in a scene and their social relations. Our method can be integrated into various trajectory prediction architectures. We have conducted extensive experiments on state-of-the-art models (based on LSTM, GAN, MLP, and Transformer), and showed improvements over all of them on synthetic (Joint Track Auto) and real (Human3.6M, Pedestrians and Cyclists in Road Traffic, and JRDB) datasets. We also explored the advantages of using 2D versus 3D poses, as well as the effect of noisy poses and the application of our pose-based predictor in robot navigation scenarios.
Related papers
- UPTor: Unified 3D Human Pose Dynamics and Trajectory Prediction for Human-Robot Interaction [0.688204255655161]
We propose a technique to predict full-body pose and trajectory key-points in a global coordinate frame.<n>We use an off-the-shelf 3D human pose estimation module, a graph attention network, and a compact, non-autoregressive transformer.<n>In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets.
arXiv Detail & Related papers (2025-05-20T19:57:25Z) - Exploring 3D Human Pose Estimation and Forecasting from the Robot's Perspective: The HARPER Dataset [52.22758311559]
We introduce HARPER, a novel dataset for 3D body pose estimation and forecast in dyadic interactions between users and Spot.
The key-novelty is the focus on the robot's perspective, i.e., on the data captured by the robot's sensors.
The scenario underlying HARPER includes 15 actions, of which 10 involve physical contact between the robot and users.
arXiv Detail & Related papers (2024-03-21T14:53:50Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.<n>Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Robots That Can See: Leveraging Human Pose for Trajectory Prediction [30.919756497223343]
We present a Transformer based architecture to predict human future trajectories in human-centric environments.
The resulting model captures the inherent uncertainty for future human trajectory prediction.
We identify new agents with limited historical data as a major contributor to error and demonstrate the complementary nature of 3D skeletal poses in reducing prediction error.
arXiv Detail & Related papers (2023-09-29T13:02:56Z) - Embodied Scene-aware Human Pose Estimation [25.094152307452]
We propose embodied scene-aware human pose estimation.
Our method is one stage, causal, and recovers global 3D human poses in a simulated environment.
arXiv Detail & Related papers (2022-06-18T03:50:19Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Human POSEitioning System (HPS): 3D Human Pose Estimation and
Self-localization in Large Scenes from Body-Mounted Sensors [71.29186299435423]
We introduce (HPS) Human POSEitioning System, a method to recover the full 3D pose of a human registered with a 3D scan of the surrounding environment.
We show that our optimization-based integration exploits the benefits of the two, resulting in pose accuracy free of drift.
HPS could be used for VR/AR applications where humans interact with the scene without requiring direct line of sight with an external camera.
arXiv Detail & Related papers (2021-03-31T17:58:31Z) - Perceiving Humans: from Monocular 3D Localization to Social Distancing [93.03056743850141]
We present a new cost-effective vision-based method that perceives humans' locations in 3D and their body orientation from a single image.
We show that it is possible to rethink the concept of "social distancing" as a form of social interaction in contrast to a simple location-based rule.
arXiv Detail & Related papers (2020-09-01T10:12:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.