UPTor: Unified 3D Human Pose Dynamics and Trajectory Prediction for Human-Robot Interaction
- URL: http://arxiv.org/abs/2505.14866v1
- Date: Tue, 20 May 2025 19:57:25 GMT
- Title: UPTor: Unified 3D Human Pose Dynamics and Trajectory Prediction for Human-Robot Interaction
- Authors: Nisarga Nilavadi, Andrey Rudenko, Timm Linder,
- Abstract summary: We propose a technique to predict full-body pose and trajectory key-points in a global coordinate frame.<n>We use an off-the-shelf 3D human pose estimation module, a graph attention network, and a compact, non-autoregressive transformer.<n>In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets.
- Score: 0.688204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a unified approach to forecast the dynamics of human keypoints along with the motion trajectory based on a short sequence of input poses. While many studies address either full-body pose prediction or motion trajectory prediction, only a few attempt to merge them. We propose a motion transformation technique to simultaneously predict full-body pose and trajectory key-points in a global coordinate frame. We utilize an off-the-shelf 3D human pose estimation module, a graph attention network to encode the skeleton structure, and a compact, non-autoregressive transformer suitable for real-time motion prediction for human-robot interaction and human-aware navigation. We introduce a human navigation dataset ``DARKO'' with specific focus on navigational activities that are relevant for human-aware mobile robot navigation. We perform extensive evaluation on Human3.6M, CMU-Mocap, and our DARKO dataset. In comparison to prior work, we show that our approach is compact, real-time, and accurate in predicting human navigation motion across all datasets. Result animations, our dataset, and code will be available at https://nisarganc.github.io/UPTor-page/
Related papers
- Social-Pose: Enhancing Trajectory Prediction with Human Body Pose [70.59399670794171]
We study the benefits of predicting human trajectories using human body poses instead of solely their Cartesian space locations in time.<n>We propose Social-pose', an attention-based pose encoder that effectively captures the poses of all humans in a scene and their social relations.
arXiv Detail & Related papers (2025-07-30T14:58:48Z) - Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - CoNav: A Benchmark for Human-Centered Collaborative Navigation [66.6268966718022]
We propose a collaborative navigation (CoNav) benchmark.
Our CoNav tackles the critical challenge of constructing a 3D navigation environment with realistic and diverse human activities.
We propose an intention-aware agent for reasoning both long-term and short-term human intention.
arXiv Detail & Related papers (2024-06-04T15:44:25Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.<n>Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - Robots That Can See: Leveraging Human Pose for Trajectory Prediction [30.919756497223343]
We present a Transformer based architecture to predict human future trajectories in human-centric environments.
The resulting model captures the inherent uncertainty for future human trajectory prediction.
We identify new agents with limited historical data as a major contributor to error and demonstrate the complementary nature of 3D skeletal poses in reducing prediction error.
arXiv Detail & Related papers (2023-09-29T13:02:56Z) - DMMGAN: Diverse Multi Motion Prediction of 3D Human Joints using
Attention-Based Generative Adverserial Network [9.247294820004143]
We propose a transformer-based generative model for forecasting multiple diverse human motions.
Our model first predicts the pose of the body relative to the hip joint. Then the textitHip Prediction Module predicts the trajectory of the hip movement for each predicted pose frame.
We show that our system outperforms the state-of-the-art in human motion prediction while it can predict diverse multi-motion future trajectories with hip movements.
arXiv Detail & Related papers (2022-09-13T23:22:33Z) - Multi-Person 3D Motion Prediction with Multi-Range Transformers [16.62864429495888]
We introduce a Multi-Range Transformers model which contains of a local-range encoder for individual motion and a global-range encoder for social interactions.
Our model not only outperforms state-of-the-art methods on long-term 3D motion prediction, but also generates diverse social interactions.
arXiv Detail & Related papers (2021-11-23T18:41:13Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Learning Multiscale Correlations for Human Motion Prediction [10.335804615372629]
We propose a novel multiscale graph convolution network (MGCN) to capture the correlations among human body components.
We evaluate our approach on two standard benchmark datasets for human motion prediction.
arXiv Detail & Related papers (2021-03-19T07:58:16Z) - Motion Prediction Using Temporal Inception Module [96.76721173517895]
We propose a Temporal Inception Module (TIM) to encode human motion.
Our framework produces input embeddings using convolutional layers, by using different kernel sizes for different input lengths.
The experimental results on standard motion prediction benchmark datasets Human3.6M and CMU motion capture dataset show that our approach consistently outperforms the state of the art methods.
arXiv Detail & Related papers (2020-10-06T20:26:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.