Empirical Evaluation of Concept Drift in ML-Based Android Malware Detection
- URL: http://arxiv.org/abs/2507.22772v1
- Date: Wed, 30 Jul 2025 15:35:51 GMT
- Title: Empirical Evaluation of Concept Drift in ML-Based Android Malware Detection
- Authors: Ahmed Sabbah, Radi Jarrar, Samer Zein, David Mohaisen,
- Abstract summary: This study examines the impact of concept drift on Android malware detection.<n>Factors influencing the drift include feature types, data environments, and detection methods.<n>No strong link was found between the type of algorithm used and concept drift.
- Score: 10.268191178804168
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Despite outstanding results, machine learning-based Android malware detection models struggle with concept drift, where rapidly evolving malware characteristics degrade model effectiveness. This study examines the impact of concept drift on Android malware detection, evaluating two datasets and nine machine learning and deep learning algorithms, as well as Large Language Models (LLMs). Various feature types--static, dynamic, hybrid, semantic, and image-based--were considered. The results showed that concept drift is widespread and significantly affects model performance. Factors influencing the drift include feature types, data environments, and detection methods. Balancing algorithms helped with class imbalance but did not fully address concept drift, which primarily stems from the dynamic nature of the malware landscape. No strong link was found between the type of algorithm used and concept drift, the impact was relatively minor compared to other variables since hyperparameters were not fine-tuned, and the default algorithm configurations were used. While LLMs using few-shot learning demonstrated promising detection performance, they did not fully mitigate concept drift, highlighting the need for further investigation.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - ADAPT: A Pseudo-labeling Approach to Combat Concept Drift in Malware Detection [0.8192907805418583]
Adapting machine learning models to changing data distributions requires frequent updates.<n>We introduce texttADAPT, a novel pseudo-labeling semi-supervised algorithm for addressing concept drift.
arXiv Detail & Related papers (2025-07-11T13:47:07Z) - Cluster Analysis and Concept Drift Detection in Malware [1.3812010983144798]
Concept drift refers to gradual or sudden changes in the properties of data that affect the accuracy of machine learning models.<n>We propose and analyze a clustering-based approach to detecting concept drift in the malware domain.
arXiv Detail & Related papers (2025-02-19T22:42:30Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples [10.352741619176383]
We propose a new technique for detecting and classifying drifted malware.<n>It learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation.<n>Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies.
arXiv Detail & Related papers (2024-07-18T22:06:20Z) - MORPH: Towards Automated Concept Drift Adaptation for Malware Detection [0.7499722271664147]
Concept drift is a significant challenge for malware detection.
Self-training has emerged as a promising approach to mitigate concept drift.
We propose MORPH -- an effective pseudo-label-based concept drift adaptation method.
arXiv Detail & Related papers (2024-01-23T14:25:43Z) - Uncovering the Hidden Cost of Model Compression [43.62624133952414]
Visual Prompting has emerged as a pivotal method for transfer learning in computer vision.
Model compression detrimentally impacts the performance of visual prompting-based transfer.
However, negative effects on calibration are not present when models are compressed via quantization.
arXiv Detail & Related papers (2023-08-29T01:47:49Z) - Incremental Online Learning Algorithms Comparison for Gesture and Visual
Smart Sensors [68.8204255655161]
This paper compares four state-of-the-art algorithms in two real applications: gesture recognition based on accelerometer data and image classification.
Our results confirm these systems' reliability and the feasibility of deploying them in tiny-memory MCUs.
arXiv Detail & Related papers (2022-09-01T17:05:20Z) - A Robust Backpropagation-Free Framework for Images [47.97322346441165]
We present an error kernel driven activation alignment algorithm for image data.
EKDAA accomplishes through the introduction of locally derived error transmission kernels and error maps.
Results are presented for an EKDAA trained CNN that employs a non-differentiable activation function.
arXiv Detail & Related papers (2022-06-03T21:14:10Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
We propose Meta-ADD, a novel framework that learns to classify concept drift by tracking the changed pattern of error rates.
Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via prototypical neural network.
In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning.
arXiv Detail & Related papers (2021-05-04T11:10:39Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.