Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples
- URL: http://arxiv.org/abs/2407.13918v2
- Date: Thu, 19 Dec 2024 20:05:59 GMT
- Title: Revisiting Concept Drift in Windows Malware Detection: Adaptation to Real Drifted Malware with Minimal Samples
- Authors: Adrian Shuai Li, Arun Iyengar, Ashish Kundu, Elisa Bertino,
- Abstract summary: We propose a new technique for detecting and classifying drifted malware.<n>It learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation.<n>Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies.
- Score: 10.352741619176383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In applying deep learning for malware classification, it is crucial to account for the prevalence of malware evolution, which can cause trained classifiers to fail on drifted malware. Existing solutions to address concept drift use active learning. They select new samples for analysts to label and then retrain the classifier with the new labels. Our key finding is that the current retraining techniques do not achieve optimal results. These techniques overlook that updating the model with scarce drifted samples requires learning features that remain consistent across pre-drift and post-drift data. The model should thus be able to disregard specific features that, while beneficial for the classification of pre-drift data, are absent in post-drift data, thereby preventing prediction degradation. In this paper, we propose a new technique for detecting and classifying drifted malware that learns drift-invariant features in malware control flow graphs by leveraging graph neural networks with adversarial domain adaptation. We compare it with existing model retraining methods in active learning-based malware detection systems and other domain adaptation techniques from the vision domain. Our approach significantly improves drifted malware detection on publicly available benchmarks and real-world malware databases reported daily by security companies in 2024. We also tested our approach in predicting multiple malware families drifted over time. A thorough evaluation shows that our approach outperforms the state-of-the-art approaches.
Related papers
- Cluster Analysis and Concept Drift Detection in Malware [1.3812010983144798]
Concept drift refers to gradual or sudden changes in the properties of data that affect the accuracy of machine learning models.
We propose and analyze a clustering-based approach to detecting concept drift in the malware domain.
arXiv Detail & Related papers (2025-02-19T22:42:30Z) - DREAM: Combating Concept Drift with Explanatory Detection and Adaptation in Malware Classification [15.912839650827589]
The rapid evolution of malware, especially with new families, can depress classification accuracy to near-random levels.
Previous research has primarily focused on detecting drift samples, relying on expert-led analysis and labeling for model retraining.
We introduce DREAM, a novel system designed to surpass the capabilities of existing drift detectors.
arXiv Detail & Related papers (2024-05-07T07:55:45Z) - MORPH: Towards Automated Concept Drift Adaptation for Malware Detection [0.7499722271664147]
Concept drift is a significant challenge for malware detection.
Self-training has emerged as a promising approach to mitigate concept drift.
We propose MORPH -- an effective pseudo-label-based concept drift adaptation method.
arXiv Detail & Related papers (2024-01-23T14:25:43Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Optimized Deep Learning Models for Malware Detection under Concept Drift [0.0]
We propose a model-agnostic protocol to improve a baseline neural network against drift.
We show the importance of feature reduction and training with the most recent validation set possible, and propose a loss function named Drift-Resilient Binary Cross-Entropy.
Our improved model shows promising results, detecting 15.2% more malware than a baseline model.
arXiv Detail & Related papers (2023-08-21T16:13:23Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
Current vulnerability screening techniques are ineffective at identifying novel vulnerabilities or providing developers with code vulnerability and classification.
To address these issues, we propose a joint multitasked unbiased vulnerability classifier comprising a transformer "RoBERTa" and graph convolution neural network (GCN)
We present a training process utilizing a semantic vulnerability graph (SVG) representation from source code, created by integrating edges from a sequential flow, control flow, and data flow, as well as a novel flow dubbed Poacher Flow (PF)
arXiv Detail & Related papers (2023-04-17T20:54:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Continual Learning with Bayesian Model based on a Fixed Pre-trained
Feature Extractor [55.9023096444383]
Current deep learning models are characterised by catastrophic forgetting of old knowledge when learning new classes.
Inspired by the process of learning new knowledge in human brains, we propose a Bayesian generative model for continual learning.
arXiv Detail & Related papers (2022-04-28T08:41:51Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
We consider perturbations bounded by the $ell$--norm, which have been shown as effective attacks in the domains of image-recognition, natural language processing, and malware-detection.
We propose a novel defense method that consists of "truncation" and "adrial training"
Motivated by the insights we obtain, we extend these components to neural network classifiers.
arXiv Detail & Related papers (2022-01-23T21:18:17Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Advanced Dropout: A Model-free Methodology for Bayesian Dropout
Optimization [62.8384110757689]
Overfitting ubiquitously exists in real-world applications of deep neural networks (DNNs)
The advanced dropout technique applies a model-free and easily implemented distribution with parametric prior, and adaptively adjusts dropout rate.
We evaluate the effectiveness of the advanced dropout against nine dropout techniques on seven computer vision datasets.
arXiv Detail & Related papers (2020-10-11T13:19:58Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z) - Exploring Optimal Deep Learning Models for Image-based Malware Variant
Classification [3.8073142980733]
We study the impact of differences in deep learning models and the degree of transfer learning on the classification accuracy of malware variants.
We found that the highest classification accuracy was obtained by fine-tuning one of the latest deep learning models with a relatively low degree of transfer learning.
arXiv Detail & Related papers (2020-04-10T23:45:54Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.