The Incomplete Bridge: How AI Research (Mis)Engages with Psychology
- URL: http://arxiv.org/abs/2507.22847v1
- Date: Wed, 30 Jul 2025 17:03:59 GMT
- Title: The Incomplete Bridge: How AI Research (Mis)Engages with Psychology
- Authors: Han Jiang, Pengda Wang, Xiaoyuan Yi, Xing Xie, Ziang Xiao,
- Abstract summary: Social sciences have accumulated a rich body of theories and methodologies for investigating the human mind and behaviors.<n> Focusing on psychology as a prominent case, this study explores the interdisciplinary synergy between AI and the field.<n>We identify key patterns of interdisciplinary integration, locate the psychology domains most frequently referenced, and highlight areas that remain underexplored.
- Score: 30.36064725942852
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social sciences have accumulated a rich body of theories and methodologies for investigating the human mind and behaviors, while offering valuable insights into the design and understanding of Artificial Intelligence (AI) systems. Focusing on psychology as a prominent case, this study explores the interdisciplinary synergy between AI and the field by analyzing 1,006 LLM-related papers published in premier AI venues between 2023 and 2025, along with the 2,544 psychology publications they cite. Through our analysis, we identify key patterns of interdisciplinary integration, locate the psychology domains most frequently referenced, and highlight areas that remain underexplored. We further examine how psychology theories/frameworks are operationalized and interpreted, identify common types of misapplication, and offer guidance for more effective incorporation. Our work provides a comprehensive map of interdisciplinary engagement between AI and psychology, thereby facilitating deeper collaboration and advancing AI systems.
Related papers
- Classifying Epistemic Relationships in Human-AI Interaction: An Exploratory Approach [0.6906005491572401]
This study examines how users form relationships with AI-how they assess, trust, and collaborate with it in research and teaching contexts.<n>Based on 31 interviews with academics across disciplines, we developed a five-part codebook and identified five relationship types.
arXiv Detail & Related papers (2025-08-02T23:41:28Z) - The Mind in the Machine: A Survey of Incorporating Psychological Theories in LLMs [5.4397630776007615]
This paper reviews how psychological theories can inform and enhance stages of Large Language Models (LLMs) development.<n>Our survey integrates insights from cognitive, developmental, behavioral, social, personality psychology, and psycholinguistics.<n>By examining both cross-domain connections and points of tension, we aim to bridge disciplinary divides and promote more thoughtful integration of psychology into future NLP research.
arXiv Detail & Related papers (2025-03-28T16:55:24Z) - The Blind Men and the Elephant: Mapping Interdisciplinarity in Research on Decentralized Autonomous Organizations [0.0]
Decentralized Autonomous Organizations (DAOs) are attracting interdisciplinary interest, particularly in business, economics, and computer science.<n>Research remains fragmented across disciplines, limiting a comprehensive understanding of their potential.<n>Current research remains predominantly applied and case-driven, with limited theoretical integration.
arXiv Detail & Related papers (2025-02-14T07:06:43Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
AI technology can support humans in scientific discovery and forming decisions, but may also disrupt democracies and target individuals.<n>The responsible use of AI and its participation in human-AI teams increasingly shows the need for AI alignment.<n>A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Combining psychoanalysis and computer science: an empirical study of the relationship between emotions and the Lacanian discourses [0.0]
This research explores the interdisciplinary interaction between psychoanalysis and computer science.
In particular, this research aims to apply computer science methods to establish relationships between emotions and Lacanian discourses.
Although the main contribution of this paper is inherently theoretical (psychoanalytic), it can also facilitate major practical applications in the realm of interactive digital systems.
arXiv Detail & Related papers (2024-10-30T10:49:33Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Expanding the Role of Affective Phenomena in Multimodal Interaction
Research [57.069159905961214]
We examined over 16,000 papers from selected conferences in multimodal interaction, affective computing, and natural language processing.
We identify 910 affect-related papers and present our analysis of the role of affective phenomena in these papers.
We find limited research on how affect and emotion predictions might be used by AI systems to enhance machine understanding of human social behaviors and cognitive states.
arXiv Detail & Related papers (2023-05-18T09:08:39Z) - Machine Psychology [54.287802134327485]
We argue that a fruitful direction for research is engaging large language models in behavioral experiments inspired by psychology.
We highlight theoretical perspectives, experimental paradigms, and computational analysis techniques that this approach brings to the table.
It paves the way for a "machine psychology" for generative artificial intelligence (AI) that goes beyond performance benchmarks.
arXiv Detail & Related papers (2023-03-24T13:24:41Z) - Characterising Research Areas in the field of AI [68.8204255655161]
We identified the main conceptual themes by performing clustering analysis on the co-occurrence network of topics.
The results highlight the growing academic interest in research themes like deep learning, machine learning, and internet of things.
arXiv Detail & Related papers (2022-05-26T16:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.