LCS: An AI-based Low-Complexity Scaler for Power-Efficient Super-Resolution of Game Content
- URL: http://arxiv.org/abs/2507.22873v1
- Date: Wed, 30 Jul 2025 17:47:25 GMT
- Title: LCS: An AI-based Low-Complexity Scaler for Power-Efficient Super-Resolution of Game Content
- Authors: Simon Pochinda, Momen K. Tageldeen, Mark Thompson, Tony Rinaldi, Troy Giorshev, Keith Lee, Jie Zhou, Frederick Walls,
- Abstract summary: The complexity of content rendering in modern games has led to a problematic growth in the workload of the GPU.<n>We propose an AI-based low-complexity scaler (LCS) inspired by state-of-the-art efficient super-resolution (ESR) models which could offload the workload on the GPU to a low-power device such as a neural processing unit (NPU)
- Score: 13.384316735936036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing complexity of content rendering in modern games has led to a problematic growth in the workload of the GPU. In this paper, we propose an AI-based low-complexity scaler (LCS) inspired by state-of-the-art efficient super-resolution (ESR) models which could offload the workload on the GPU to a low-power device such as a neural processing unit (NPU). The LCS is trained on GameIR image pairs natively rendered at low and high resolution. We utilize adversarial training to encourage reconstruction of perceptually important details, and apply reparameterization and quantization techniques to reduce model complexity and size. In our comparative analysis we evaluate the LCS alongside the publicly available AMD hardware-based Edge Adaptive Scaling Function (EASF) and AMD FidelityFX Super Resolution 1 (FSR1) on five different metrics, and find that the LCS achieves better perceptual quality, demonstrating the potential of ESR models for upscaling on resource-constrained devices.
Related papers
- QuantVSR: Low-Bit Post-Training Quantization for Real-World Video Super-Resolution [53.13952833016505]
We propose a low-bit quantization model for real-world video super-resolution (VSR)<n>We use a calibration dataset to measure both spatial and temporal complexity for each layer.<n>We refine the FP and low-bit branches to achieve simultaneous optimization.
arXiv Detail & Related papers (2025-08-06T14:35:59Z) - SimpleGVR: A Simple Baseline for Latent-Cascaded Video Super-Resolution [55.14432034345353]
We study key design principles for latter cascaded video super-resolution models, which are underexplored currently.<n>First, we propose two strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator.<n>Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs.
arXiv Detail & Related papers (2025-06-24T17:57:26Z) - C2D-ISR: Optimizing Attention-based Image Super-resolution from Continuous to Discrete Scales [6.700548615812325]
We propose a novel framework, textbfC2D-ISR, for optimizing attention-based image super-resolution models.<n>Our approach is based on a two-stage training methodology and a hierarchical encoding mechanism.<n>In addition, we generalize the hierarchical encoding mechanism with existing attention-based network structures.
arXiv Detail & Related papers (2025-03-17T21:52:18Z) - Low-Rank Adapters Meet Neural Architecture Search for LLM Compression [1.8434042562191815]
The rapid expansion of Large Language Models (LLMs) has posed significant challenges regarding the computational resources required for fine-tuning and deployment.<n>Recent advancements in low-rank adapters have demonstrated their efficacy in parameter-efficient fine-tuning (PEFT) of these models.<n>This paper comprehensively discusses innovative approaches that synergize low-rank representations with Neural Architecture Search (NAS) techniques.
arXiv Detail & Related papers (2025-01-23T02:14:08Z) - PassionSR: Post-Training Quantization with Adaptive Scale in One-Step Diffusion based Image Super-Resolution [95.98801201266099]
Diffusion-based image super-resolution (SR) models have shown superior performance at the cost of multiple denoising steps.<n>We propose a novel post-training quantization approach with adaptive scale in one-step diffusion (OSD) image SR, PassionSR.<n>Our PassionSR achieves significant advantages over recent leading low-bit quantization methods for image SR.
arXiv Detail & Related papers (2024-11-26T04:49:42Z) - SOLO: A Single Transformer for Scalable Vision-Language Modeling [74.05173379908703]
We present SOLO, a single transformer for visiOn-Language mOdeling.<n>A unified single Transformer architecture, like SOLO, effectively addresses these scalability concerns in LVLMs.<n>In this paper, we introduce the first open-source training recipe for developing SOLO, an open-source 7B LVLM.
arXiv Detail & Related papers (2024-07-08T22:40:15Z) - Low-Resolution Self-Attention for Semantic Segmentation [93.30597515880079]
We introduce the Low-Resolution Self-Attention (LRSA) mechanism to capture global context at a significantly reduced computational cost.<n>Our approach involves computing self-attention in a fixed low-resolution space regardless of the input image's resolution.<n>We demonstrate the effectiveness of our LRSA approach by building the LRFormer, a vision transformer with an encoder-decoder structure.
arXiv Detail & Related papers (2023-10-08T06:10:09Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Generative Adversarial Super-Resolution at the Edge with Knowledge
Distillation [1.3764085113103222]
Single-Image Super-Resolution can support robotic tasks in environments where a reliable visual stream is required.
We propose an efficient Generative Adversarial Network model for real-time Super-Resolution, called EdgeSRGAN.
arXiv Detail & Related papers (2022-09-07T10:58:41Z) - The Architectural Implications of Distributed Reinforcement Learning on
CPU-GPU Systems [45.479582612113205]
We show how to improve the performance and power efficiency of RL training on CPU-GPU systems.
We quantify the overall hardware utilization on a state-of-the-art distributed RL training framework.
We also introduce a new system design metric, CPU/GPU ratio, and show how to find the optimal balance between CPU and GPU resources.
arXiv Detail & Related papers (2020-12-08T04:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.