論文の概要: Viser: Imperative, Web-based 3D Visualization in Python
- arxiv url: http://arxiv.org/abs/2507.22885v1
- Date: Wed, 30 Jul 2025 17:59:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-31 16:14:18.390141
- Title: Viser: Imperative, Web-based 3D Visualization in Python
- Title(参考訳): Viser: PythonのインペラティブでWebベースの3D可視化
- Authors: Brent Yi, Chung Min Kim, Justin Kerr, Gina Wu, Rebecca Feng, Anthony Zhang, Jonas Kulhanek, Hongsuk Choi, Yi Ma, Matthew Tancik, Angjoo Kanazawa,
- Abstract要約: Viserはコンピュータビジョンとロボット工学のための3D視覚化ライブラリである。
この記事では、Viserの機能、インターフェース、実装について説明する。
- 参考スコア(独自算出の注目度): 35.57876533606679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Viser, a 3D visualization library for computer vision and robotics. Viser aims to bring easy and extensible 3D visualization to Python: we provide a comprehensive set of 3D scene and 2D GUI primitives, which can be used independently with minimal setup or composed to build specialized interfaces. This technical report describes Viser's features, interface, and implementation. Key design choices include an imperative-style API and a web-based viewer, which improve compatibility with modern programming patterns and workflows.
- Abstract(参考訳): コンピュータビジョンとロボティクスのための3DビジュアライゼーションライブラリViserを紹介します。
ViserはPythonに簡単で拡張可能な3Dビジュアライゼーションを提供することを目的としています。我々は3Dシーンと2D GUIプリミティブの包括的なセットを提供しています。
この技術レポートはViserの機能、インターフェース、実装について説明している。
主な設計選択は命令型APIとWebベースのビューアで、モダンなプログラミングパターンやワークフローとの互換性を改善している。
関連論文リスト
- Aligning Text, Images, and 3D Structure Token-by-Token [8.521599463802637]
構造化3次元シーンにおける自己回帰モデルの可能性について検討する。
言語,画像,3Dシーンを整合させる統一LLMフレームワークを提案する。
実世界の3Dオブジェクト認識タスクにおけるモデルの有効性を示す。
論文 参考訳(メタデータ) (2025-06-09T17:59:37Z) - Ross3D: Reconstructive Visual Instruction Tuning with 3D-Awareness [73.72335146374543]
本稿では,3次元視覚指導を訓練手順に組み込んだ3次元視覚指導法(Ross3D)について紹介する。
Ross3Dは様々な3Dシーン理解ベンチマークで最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2025-04-02T16:59:55Z) - Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
CE3Dと呼ばれる対話型3Dシーン編集手法を提案する。
Hash-Atlasは3Dシーンビューを表し、3Dシーンの編集を2Dアトラスイメージに転送する。
その結果、CE3Dは複数の視覚モデルを効果的に統合し、多様な視覚効果が得られることを示した。
論文 参考訳(メタデータ) (2024-07-09T13:24:42Z) - Scene-LLM: Extending Language Model for 3D Visual Understanding and Reasoning [24.162598399141785]
Scene-LLMは3次元視覚言語モデルであり、インタラクティブな3次元屋内環境におけるエンボディエージェントの能力を高める。
Scene-LLMを用いた実験は, 密接なキャプション, 質問応答, 対話型プランニングにおいて, 強力な機能を示す。
論文 参考訳(メタデータ) (2024-03-18T01:18:48Z) - Uni3DL: Unified Model for 3D and Language Understanding [41.74095171149082]
3Dおよび言語理解のための統一モデルであるUni3DLを提案する。
Uni3DLは、ポイントクラウド上で直接動作する。
多様な3D視覚言語理解タスクに対して厳格に評価されている。
論文 参考訳(メタデータ) (2023-12-05T08:30:27Z) - Uni3D: Exploring Unified 3D Representation at Scale [66.26710717073372]
大規模に統一された3次元表現を探索する3次元基礎モデルであるUni3Dを提案する。
Uni3Dは、事前にトレーニングされた2D ViTのエンドツーエンドを使用して、3Dポイントクラウド機能と画像テキスト整列機能とを一致させる。
強力なUni3D表現は、野生での3D絵画や検索などの応用を可能にする。
論文 参考訳(メタデータ) (2023-10-10T16:49:21Z) - Can We Solve 3D Vision Tasks Starting from A 2D Vision Transformer? [111.11502241431286]
視覚変換器(ViT)は2次元画像理解タスクの解決に有効であることが証明されている。
2Dおよび3Dタスク用のViTは、これまでほとんど転送できない、非常に異なるアーキテクチャ設計を採用してきた。
本稿では,標準的な2D ViTアーキテクチャを用いて,3次元視覚世界を理解するという魅力的な約束を示す。
論文 参考訳(メタデータ) (2022-09-15T03:34:58Z) - Interactive Annotation of 3D Object Geometry using 2D Scribbles [84.51514043814066]
本稿では,ポイントクラウドデータとRGB画像から3次元オブジェクト形状をアノテートする対話型フレームワークを提案する。
当社のフレームワークは,芸術的,グラフィック的専門知識のないナイーブユーザを対象としている。
論文 参考訳(メタデータ) (2020-08-24T21:51:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。