Towards Omnimodal Expressions and Reasoning in Referring Audio-Visual Segmentation
- URL: http://arxiv.org/abs/2507.22886v2
- Date: Thu, 31 Jul 2025 03:28:53 GMT
- Title: Towards Omnimodal Expressions and Reasoning in Referring Audio-Visual Segmentation
- Authors: Kaining Ying, Henghui Ding, Guangquan Jie, Yu-Gang Jiang,
- Abstract summary: We propose Omnimodal Referring Audio-Visual expressions ( OmniAVS), a new dataset containing 2,104 videos and 61,095 multimodal referring expressions.<n> OmniAVS stands out with three key innovations: (1) 8 types of multimodal expressions that flexibly combine text, speech, sound, and visual cues; (2) an emphasis on understanding audio content beyond just detecting their presence; and (3) the inclusion of complex reasoning in expressions.
- Score: 68.4547223233201
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Referring audio-visual segmentation (RAVS) has recently seen significant advancements, yet challenges remain in integrating multimodal information and deeply understanding and reasoning about audiovisual content. To extend the boundaries of RAVS and facilitate future research in this field, we propose Omnimodal Referring Audio-Visual Segmentation (OmniAVS), a new dataset containing 2,104 videos and 61,095 multimodal referring expressions. OmniAVS stands out with three key innovations: (1) 8 types of multimodal expressions that flexibly combine text, speech, sound, and visual cues; (2) an emphasis on understanding audio content beyond just detecting their presence; and (3) the inclusion of complex reasoning and world knowledge in expressions. Furthermore, we introduce Omnimodal Instructed Segmentation Assistant (OISA), to address the challenges of multimodal reasoning and fine-grained understanding of audiovisual content in OmniAVS. OISA uses MLLM to comprehend complex cues and perform reasoning-based segmentation. Extensive experiments show that OISA outperforms existing methods on OmniAVS and achieves competitive results on other related tasks.
Related papers
- Watch and Listen: Understanding Audio-Visual-Speech Moments with Multimodal LLM [32.06547791451391]
TriSense is a triple-modality large language model designed for holistic video temporal understanding.<n>Central to TriSense is a Query-Based Connector that adaptively reweights modality contributions based on the input query.<n>TriSense-2M is a dataset of over 2 million curated samples generated via an automated pipeline.
arXiv Detail & Related papers (2025-05-23T17:04:27Z) - AVS-Mamba: Exploring Temporal and Multi-modal Mamba for Audio-Visual Segmentation [62.682428307810525]
We introduce AVS-Mamba, a selective state space model to address the audio-visual segmentation task.<n>Our framework incorporates two key components for video understanding and cross-modal learning.<n>Our approach achieves new state-of-the-art results on the AVSBench-object and AVS-semantic datasets.
arXiv Detail & Related papers (2025-01-14T03:20:20Z) - OmniBench: Towards The Future of Universal Omni-Language Models [63.16606414452612]
We introduce OmniBench, a novel benchmark designed to evaluate models' ability to recognize, interpret, and reason across visual, acoustic, and textual inputs simultaneously.<n>Our evaluation reveals that open-source OLMs show significant limitations in instruction-following and reasoning in tri-modal contexts.<n>We advocate for developing more robust tri-modal integration techniques and training strategies to enhance OLM performance.
arXiv Detail & Related papers (2024-09-23T17:59:05Z) - Robust Audiovisual Speech Recognition Models with Mixture-of-Experts [67.75334989582709]
We introduce EVA, leveraging the mixture-of-Experts for audioVisual ASR to perform robust speech recognition for in-the-wild'' videos.
We first encode visual information into visual tokens sequence and map them into speech space by a lightweight projection.
Experiments show our model achieves state-of-the-art results on three benchmarks.
arXiv Detail & Related papers (2024-09-19T00:08:28Z) - Meerkat: Audio-Visual Large Language Model for Grounding in Space and Time [73.7845280328535]
We present Meerkat, an audio-visual LLM equipped with a fine-grained understanding of image and audio.
Meerkat can tackle challenging tasks such as audio referred image grounding, image guided audio temporal localization, and audio-visual fact-checking.
We achieve state-of-the-art performance on all these downstream tasks with a relative improvement of up to 37.12%.
arXiv Detail & Related papers (2024-07-01T23:32:25Z) - Multimodal Variational Auto-encoder based Audio-Visual Segmentation [46.67599800471001]
ECMVAE factorizes the representations of each modality with a modality-shared representation and a modality-specific representation.
Our approach leads to a new state-of-the-art for audio-visual segmentation, with a 3.84 mIOU performance leap.
arXiv Detail & Related papers (2023-10-12T13:09:40Z) - QDFormer: Towards Robust Audiovisual Segmentation in Complex Environments with Quantization-based Semantic Decomposition [47.103732403296654]
Multi-source semantic space can be represented as the Cartesian product of single-source sub-spaces.
We introduce a global-to-local quantization mechanism, which distills knowledge from stable global (clip-level) features into local (frame-level) ones.
Experiments demonstrate that our semantically decomposed audio representation significantly improves AVS performance.
arXiv Detail & Related papers (2023-09-29T20:48:44Z) - TriBERT: Full-body Human-centric Audio-visual Representation Learning
for Visual Sound Separation [35.93516937521393]
We introduce TriBERT -- a transformer-based architecture inspired by ViLBERT.
TriBERT enables contextual feature learning across three modalities: vision, pose, and audio.
We show that the learned TriBERT representations are generic and significantly improve performance on other audio-visual tasks.
arXiv Detail & Related papers (2021-10-26T04:50:42Z) - AudioVisual Video Summarization [103.47766795086206]
In video summarization, existing approaches just exploit the visual information while neglecting the audio information.
We propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this.
arXiv Detail & Related papers (2021-05-17T08:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.