EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
- URL: http://arxiv.org/abs/2507.22929v1
- Date: Thu, 24 Jul 2025 12:07:36 GMT
- Title: EH-Benchmark Ophthalmic Hallucination Benchmark and Agent-Driven Top-Down Traceable Reasoning Workflow
- Authors: Xiaoyu Pan, Yang Bai, Ke Zou, Yang Zhou, Jun Zhou, Huazhu Fu, Yih-Chung Tham, Yong Liu,
- Abstract summary: EH-Benchmark is a novel ophthalmology benchmark designed to evaluate hallucinations in Medical Large Language Models.<n>We categorize hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition.<n>Our framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability.
- Score: 43.82288530883818
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical Large Language Models (MLLMs) play a crucial role in ophthalmic diagnosis, holding significant potential to address vision-threatening diseases. However, their accuracy is constrained by hallucinations stemming from limited ophthalmic knowledge, insufficient visual localization and reasoning capabilities, and a scarcity of multimodal ophthalmic data, which collectively impede precise lesion detection and disease diagnosis. Furthermore, existing medical benchmarks fail to effectively evaluate various types of hallucinations or provide actionable solutions to mitigate them. To address the above challenges, we introduce EH-Benchmark, a novel ophthalmology benchmark designed to evaluate hallucinations in MLLMs. We categorize MLLMs' hallucinations based on specific tasks and error types into two primary classes: Visual Understanding and Logical Composition, each comprising multiple subclasses. Given that MLLMs predominantly rely on language-based reasoning rather than visual processing, we propose an agent-centric, three-phase framework, including the Knowledge-Level Retrieval stage, the Task-Level Case Studies stage, and the Result-Level Validation stage. Experimental results show that our multi-agent framework significantly mitigates both types of hallucinations, enhancing accuracy, interpretability, and reliability. Our project is available at https://github.com/ppxy1/EH-Benchmark.
Related papers
- MIRAGE: Assessing Hallucination in Multimodal Reasoning Chains of MLLM [58.2298313720146]
Multimodal hallucinations are multi-sourced and arise from diverse causes.<n>Existing benchmarks fail to adequately distinguish between perception-induced hallucinations and reasoning-induced hallucinations.
arXiv Detail & Related papers (2025-05-30T05:54:36Z) - Towards a Systematic Evaluation of Hallucinations in Large-Vision Language Models [57.58426038241812]
Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in complex multimodal tasks.<n>These models still suffer from hallucinations when required to implicitly recognize or infer diverse visual entities from images.<n>We propose a novel visual question answering (VQA) benchmark that employs contextual reasoning prompts as hallucination attacks.
arXiv Detail & Related papers (2024-12-29T23:56:01Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.<n>This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.<n>Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - Mitigating Hallucinations of Large Language Models in Medical Information Extraction via Contrastive Decoding [92.32881381717594]
We introduce ALternate Contrastive Decoding (ALCD) to solve hallucination issues in medical information extraction tasks.
ALCD demonstrates significant improvements in resolving hallucination issues compared to conventional decoding methods.
arXiv Detail & Related papers (2024-10-21T07:19:19Z) - LMOD: A Large Multimodal Ophthalmology Dataset and Benchmark for Large Vision-Language Models [38.78576472811659]
Large vision-language models (LVLMs) have the potential to assist in understanding anatomical information, diagnosing eye diseases, and drafting interpretations and follow-up plans.<n>We benchmarked 13 state-of-the-art LVLM representatives from closed-source, open-source, and medical domains.<n>The results demonstrate a significant performance drop for LVLMs in ophthalmology compared to other domains.
arXiv Detail & Related papers (2024-10-02T14:57:58Z) - Detecting and Evaluating Medical Hallucinations in Large Vision Language Models [22.30139330566514]
Large Vision Language Models (LVLMs) are increasingly integral to healthcare applications.
LVLMs inherit susceptibility to hallucinations-a significant concern in high-stakes medical contexts.
We introduce Med-HallMark, the first benchmark specifically designed for hallucination detection and evaluation.
We also present MediHallDetector, a novel Medical LVLM engineered for precise hallucination detection.
arXiv Detail & Related papers (2024-06-14T17:14:22Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.<n> MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.