論文の概要: Deep Learning Approaches for Multimodal Intent Recognition: A Survey
- arxiv url: http://arxiv.org/abs/2507.22934v1
- Date: Thu, 24 Jul 2025 17:12:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:08.309386
- Title: Deep Learning Approaches for Multimodal Intent Recognition: A Survey
- Title(参考訳): マルチモーダル・インテント認識のためのディープ・ラーニング・アプローチ:サーベイ
- Authors: Jingwei Zhao, Yuhua Wen, Qifei Li, Minchi Hu, Yingying Zhou, Jingyao Xue, Junyang Wu, Yingming Gao, Zhengqi Wen, Jianhua Tao, Ya Li,
- Abstract要約: Intent Recognitionは、伝統的に自然言語処理におけるテキストに焦点を当てた、ユーザの基本的な意図を特定することを目的としている。
自然の人間とコンピュータの相互作用に対する需要が高まるにつれ、この分野は深層学習とマルチモーダルなアプローチを通じて発展し、音声、視覚、生理的信号からのデータを取り込んできた。
本稿では,意図認識のためのディープラーニング手法について検討し,非モーダルからマルチモーダルへのシフト,関連するデータセット,方法論,アプリケーション,現在の課題について述べる。
- 参考スコア(独自算出の注目度): 37.39741906112862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intent recognition aims to identify users' underlying intentions, traditionally focusing on text in natural language processing. With growing demands for natural human-computer interaction, the field has evolved through deep learning and multimodal approaches, incorporating data from audio, vision, and physiological signals. Recently, the introduction of Transformer-based models has led to notable breakthroughs in this domain. This article surveys deep learning methods for intent recognition, covering the shift from unimodal to multimodal techniques, relevant datasets, methodologies, applications, and current challenges. It provides researchers with insights into the latest developments in multimodal intent recognition (MIR) and directions for future research.
- Abstract(参考訳): Intent Recognitionは、伝統的に自然言語処理におけるテキストに焦点を当てた、ユーザの基本的な意図を特定することを目的としている。
自然の人間とコンピュータの相互作用に対する需要が高まるにつれ、この分野は深層学習とマルチモーダルなアプローチを通じて発展し、音声、視覚、生理的信号からのデータを取り込んできた。
最近、Transformerベースのモデルが導入され、この分野で顕著なブレークスルーをもたらした。
本稿では,意図認識のためのディープラーニング手法について検討し,非モーダルからマルチモーダルへのシフト,関連するデータセット,方法論,アプリケーション,現在の課題について述べる。
研究者は、Multimodal intent recognition(MIR)の最新の発展と今後の研究の方向性について洞察を得ることができる。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object
Detection [72.36017150922504]
教師の融合変換器から学生検出器へ学習した文脈知識を伝達するためのマルチモーダルな文脈知識蒸留フレームワーク MMC-Det を提案する。
多様なマルチモーダルマスキング言語モデリングは、従来のマルチモーダルマスキング言語モデリング(MLM)に基づくオブジェクト分散制約により実現される。
論文 参考訳(メタデータ) (2023-08-30T08:33:13Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - Multimodality Representation Learning: A Survey on Evolution,
Pretraining and Its Applications [47.501121601856795]
マルチモダリティ表現学習は、異なるモダリティとそれらの相関から情報を埋め込む学習手法である。
異なるモダリティからのクロスモーダル相互作用と補完情報は、高度なモデルが任意のマルチモーダルタスクを実行するために不可欠である。
本調査では,深層学習型マルチモーダルアーキテクチャの進化と拡張に関する文献を報告する。
論文 参考訳(メタデータ) (2023-02-01T11:48:34Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - A Review on Methods and Applications in Multimodal Deep Learning [8.152125331009389]
マルチモーダル深層学習は、様々な感覚が情報処理に携わっているときに、よりよく理解し、分析するのに役立つ。
本稿では,画像,ビデオ,テキスト,音声,身体ジェスチャー,表情,生理的信号など,多種類のモダリティに焦点を当てる。
様々なマルチモーダル深層学習手法のきめ細かい分類法を提案し,様々な応用をより深く研究した。
論文 参考訳(メタデータ) (2022-02-18T13:50:44Z) - Recent Advances and Trends in Multimodal Deep Learning: A Review [9.11022096530605]
マルチモーダルディープラーニングは、様々なモーダルを使って情報を処理およびリンクできるモデルを作成することを目的としている。
本稿では,画像,ビデオ,テキスト,音声,身体ジェスチャー,表情,生理的信号など,多種類のモダリティに焦点を当てる。
様々なマルチモーダル深層学習応用のきめ細かい分類法が提案され、様々な応用をより深く研究している。
論文 参考訳(メタデータ) (2021-05-24T04:20:45Z) - A Review on Explainability in Multimodal Deep Neural Nets [2.3204178451683264]
マルチモーダルAI技術は、いくつかのアプリケーションドメインで大きな成功を収めている。
その優れた性能にもかかわらず、深層ニューラルネットワークの複雑で不透明でブラックボックスな性質は、社会的受容と使用性を制限する。
本稿では,マルチモーダル深層ニューラルネットワークにおける説明可能性に関する包括的調査と解説を行うため,本論文を概説する。
論文 参考訳(メタデータ) (2021-05-17T14:17:49Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。