論文の概要: CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography
- arxiv url: http://arxiv.org/abs/2507.22953v1
- Date: Tue, 29 Jul 2025 19:58:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.569865
- Title: CADS: A Comprehensive Anatomical Dataset and Segmentation for Whole-Body Anatomy in Computed Tomography
- Title(参考訳): CADS : CTにおける全身解剖の総合的データセットと分類
- Authors: Murong Xu, Tamaz Amiranashvili, Fernando Navarro, Maksym Fritsak, Ibrahim Ethem Hamamci, Suprosanna Shit, Bastian Wittmann, Sezgin Er, Sebastian M. Christ, Ezequiel de la Rosa, Julian Deseoe, Robert Graf, Hendrik Möller, Anjany Sekuboyina, Jan C. Peeken, Sven Becker, Giulia Baldini, Johannes Haubold, Felix Nensa, René Hosch, Nikhil Mirajkar, Saad Khalid, Stefan Zachow, Marc-André Weber, Georg Langs, Jakob Wasserthal, Mehmet Kemal Ozdemir, Andrey Fedorov, Ron Kikinis, Stephanie Tanadini-Lang, Jan S. Kirschke, Stephanie E. Combs, Bjoern Menze,
- Abstract要約: 我々は,全体CTセグメント化のための異種データソースの体系的統合,標準化,ラベル付けを優先するオープンソースフレームワークであるCADSを提案する。
コアには22,022のCTボリュームの大規模なデータセットがあり、167の解剖学的構造に対する完全なアノテーションがある。
18の公開データセットと独立した実世界の病院コホートを包括的に評価することにより、SoTAアプローチに対するアドバンテージを実証する。
- 参考スコア(独自算出の注目度): 27.1055374364626
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate delineation of anatomical structures in volumetric CT scans is crucial for diagnosis and treatment planning. While AI has advanced automated segmentation, current approaches typically target individual structures, creating a fragmented landscape of incompatible models with varying performance and disparate evaluation protocols. Foundational segmentation models address these limitations by providing a holistic anatomical view through a single model. Yet, robust clinical deployment demands comprehensive training data, which is lacking in existing whole-body approaches, both in terms of data heterogeneity and, more importantly, anatomical coverage. In this work, rather than pursuing incremental optimizations in model architecture, we present CADS, an open-source framework that prioritizes the systematic integration, standardization, and labeling of heterogeneous data sources for whole-body CT segmentation. At its core is a large-scale dataset of 22,022 CT volumes with complete annotations for 167 anatomical structures, representing a significant advancement in both scale and coverage, with 18 times more scans than existing collections and 60% more distinct anatomical targets. Building on this diverse dataset, we develop the CADS-model using established architectures for accessible and automated full-body CT segmentation. Through comprehensive evaluation across 18 public datasets and an independent real-world hospital cohort, we demonstrate advantages over SoTA approaches. Notably, thorough testing of the model's performance in segmentation tasks from radiation oncology validates its direct utility for clinical interventions. By making our large-scale dataset, our segmentation models, and our clinical software tool publicly available, we aim to advance robust AI solutions in radiology and make comprehensive anatomical analysis accessible to clinicians and researchers alike.
- Abstract(参考訳): ボリュームCTにおける解剖学的構造の正確な記述は,診断と治療計画に不可欠である。
AIには高度な自動セグメンテーションがあるが、現在のアプローチは一般的に個々の構造をターゲットにしており、さまざまなパフォーマンスと異なる評価プロトコルを備えた互換性のないモデルの断片化されたランドスケープを作成している。
基本セグメンテーションモデルは、単一のモデルを通して全体論的解剖学的ビューを提供することによって、これらの制限に対処する。
しかし、ロバストな臨床展開には包括的トレーニングデータが必要である。これは、データ不均一性と、より重要なのは解剖学的カバレッジの両方において、既存の全身アプローチに欠けている。
本研究では, モデルアーキテクチャにおける漸進的な最適化を追求する代わりに, 組織的統合, 標準化, 異種データソースのラベル付けを優先するオープンソースフレームワークであるCADSを提案する。
コアとなるのは、22,022のCTボリュームの大規模なデータセットで、167の解剖学的構造に対する完全なアノテーションがあり、既存のコレクションの18倍のスキャンと60%の異なる解剖学的ターゲットで、スケールとカバレッジの両方において著しい進歩を示している。
この多種多様なデータセットをベースとしたCADSモデルの構築を行い, アクセス可能かつ自動化されたフルボディCTセグメンテーションを実現する。
18の公開データセットと独立した実世界の病院コホートを包括的に評価することにより、SoTAアプローチに対するアドバンテージを実証する。
特に放射線腫瘍学のセグメンテーションタスクにおけるモデルの性能の徹底的なテストは、臨床介入の直接的な有用性を検証する。
大規模データセット、セグメンテーションモデル、および臨床ソフトウェアツールを公開することにより、放射線学における堅牢なAIソリューションを推進し、臨床医や研究者にも包括的な解剖学的分析を可能にすることを目指している。
関連論文リスト
- GRASPing Anatomy to Improve Pathology Segmentation [67.98147643529309]
本稿では,病的セグメンテーションモデルを強化するモジュール型プラグイン・アンド・プレイフレームワークGRASPを紹介する。
2つのPET/CTデータセット上でGRASPを評価し、系統的アブレーション研究を行い、フレームワークの内部動作について検討する。
論文 参考訳(メタデータ) (2025-08-05T12:26:36Z) - A Continual Learning-driven Model for Accurate and Generalizable Segmentation of Clinically Comprehensive and Fine-grained Whole-body Anatomies in CT [67.34586036959793]
完全に注釈付きCTデータセットは存在せず、すべての解剖学がトレーニングのために記述されている。
完全解剖を分割できる連続学習駆動CTモデルを提案する。
単体CT分割モデルCL-Netは, 臨床的に包括的に包括的に235個の粒状体解剖の集合を高精度に分割することができる。
論文 参考訳(メタデータ) (2025-03-16T23:55:02Z) - Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - Optimized Vessel Segmentation: A Structure-Agnostic Approach with Small Vessel Enhancement and Morphological Correction [7.882674026364302]
マルチモーダル血管セグメンテーションのための小型血管拡張と形態的補正を取り入れた構造診断手法を提案する。
本手法は,より優れたセグメンテーション精度,一般化,34.6%の接続性向上を実現し,臨床応用の可能性を強調した。
論文 参考訳(メタデータ) (2024-11-22T08:38:30Z) - TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI [59.86827659781022]
nnU-Netモデル(TotalSegmentator)をMRIおよび80原子構造で訓練した。
予測されたセグメンテーションと専門家基準セグメンテーションとの間には,ディススコアが算出され,モデル性能が評価された。
オープンソースで使いやすいモデルは、80構造の自動的で堅牢なセグメンテーションを可能にする。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
自動生成臓器マスクを利用する新しい解剖ガイドセグメンテーションフレームワークを開発した。
提案手法を2つのCRCセグメンテーションデータセット上で広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-07T03:22:06Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。