論文の概要: Multi-Hazard Early Warning Systems for Agriculture with Featural-Temporal Explanations
- arxiv url: http://arxiv.org/abs/2507.22962v1
- Date: Wed, 30 Jul 2025 05:16:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:08.413943
- Title: Multi-Hazard Early Warning Systems for Agriculture with Featural-Temporal Explanations
- Title(参考訳): 肥大化による農業の早期温暖化システム
- Authors: Boyuan Zheng, Victor W. Chu,
- Abstract要約: 気候の極端には農業へのリスクが増大する。
従来の単一ハザード予測手法は、同時気候事象間の複雑な相互作用を捉えるには不十分である。
本稿では、逐次的なディープラーニングモデルと高度な説明可能な人工知能(XAI)技術を組み合わせて、農業のためのマルチハザード予測フレームワークを導入する。
- 参考スコア(独自算出の注目度): 5.363664265121231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate extremes present escalating risks to agriculture intensifying the need for reliable multi-hazard early warning systems (EWS). The situation is evolving due to climate change and hence such systems should have the intelligent to continue to learn from recent climate behaviours. However, traditional single-hazard forecasting methods fall short in capturing complex interactions among concurrent climatic events. To address this deficiency, in this paper, we combine sequential deep learning models and advanced Explainable Artificial Intelligence (XAI) techniques to introduce a multi-hazard forecasting framework for agriculture. In our experiments, we utilize meteorological data from four prominent agricultural regions in the United States (between 2010 and 2023) to validate the predictive accuracy of our framework on multiple severe event types, which are extreme cold, floods, frost, hail, heatwaves, and heavy rainfall, with tailored models for each area. The framework uniquely integrates attention mechanisms with TimeSHAP (a recurrent XAI explainer for time series) to provide comprehensive temporal explanations revealing not only which climatic features are influential but precisely when their impacts occur. Our results demonstrate strong predictive accuracy, particularly with the BiLSTM architecture, and highlight the system's capacity to inform nuanced, proactive risk management strategies. This research significantly advances the explainability and applicability of multi-hazard EWS, fostering interdisciplinary trust and effective decision-making process for climate risk management in the agricultural industry.
- Abstract(参考訳): 気候極端には農業へのリスクが増大し、信頼性の高いマルチハザード早期警戒システム(EWS)の必要性が高まっている。
気候変動の影響で状況は進化しており、このようなシステムは最近の気候行動から学び続ける知性を持つべきである。
しかし、従来の単一ハザード予測手法は、同時気象事象間の複雑な相互作用を捉えるには不十分である。
本稿では,この欠陥に対処するために,先進的なディープラーニングモデルと先進的な説明可能な人工知能(XAI)技術を組み合わせて,農業のためのマルチハザード予測フレームワークを導入する。
本実験では,2010年から2023年にかけての米国の4大農業地帯の気象データを用いて,寒冷,洪水,凍土,熱波,豪雨といった多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多種多
このフレームワークは、注意機構をTimeSHAP(時系列の繰り返しXAI説明器)と一意に統合し、気候の特徴がどのような影響を受けているかだけでなく、その影響がいつ起こっているかを正確に示す包括的な時間的説明を提供する。
以上の結果から,特にBiLSTMアーキテクチャでは予測精度が強く,不確実かつ積極的なリスク管理戦略を通知するシステムの能力を強調した。
本研究は,農業における気候リスク管理のための学際的信頼と効果的な意思決定プロセスを育成し,マルチハザードEWSの説明可能性と適用性を著しく向上させるものである。
関連論文リスト
- ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
我々は、ERA5の時系列気候データ、NOAAの極度の気象イベントデータ、NASAの衛星画像データを調整するマルチモーダル気候ベンチマークであるClimateBench-Mに貢献する。
また,各データモダリティの下では,天気予報,雷雨警報,作物の分断作業において,競争性能を向上できる簡易かつ強力な生成手法を提案する。
論文 参考訳(メタデータ) (2025-04-10T02:22:23Z) - DroughtSet: Understanding Drought Through Spatial-Temporal Learning [10.430055605915895]
干ばつは最も破壊的で高価な自然災害の1つである。
我々は,関連する予測機能と3つの干ばつ指標を統合した新しいデータセットDroughtSetを提案する。
本モデルは物理・生物学的特徴の空間的・時間的情報から学習し,3種類の干ばつを同時に予測する。
論文 参考訳(メタデータ) (2024-12-19T17:24:15Z) - Regional climate risk assessment from climate models using probabilistic machine learning [12.737495484442443]
GenFocalは、微細な時間スケールで相互作用する複雑な気候プロセスのための汎用的でエンドツーエンドな生成フレームワークである。
現在の気候における極端なリスクを、先進的なアプローチよりも正確に評価する。
GenFocalは、気候の予測がdecadalの時間スケールに与える影響に関する文献と一致する、魅力的な結果を示している。
論文 参考訳(メタデータ) (2024-12-11T03:52:17Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
我々は、気象時系列から表現指標を予測するために、ディープニューラルネットワークを訓練する。
このアプローチは従来のプロセスベースのモデルよりも優れています。
論文 参考訳(メタデータ) (2024-01-08T15:29:23Z) - Towards an end-to-end artificial intelligence driven global weather forecasting system [57.5191940978886]
我々は,地球規模の気象変動に対するAIに基づくデータ同化モデル,すなわちAdasを提案する。
我々は,アダスが地球観測を同化して高品質な分析を行い,長期にわたって安定して運用できることを実証した。
この手法を現実のシナリオに適用するのは,私たちが初めてです。
論文 参考訳(メタデータ) (2023-12-18T09:05:28Z) - Interpretable AI-Driven Discovery of Terrain-Precipitation Relationships
for Enhanced Climate Insights [8.780306158191443]
GA-GWR(GA-GWR)と呼ばれるAIによる知識発見フレームワークを提案する。
本研究は,複雑な地形を特徴とする地域での降水パターンと地形特性の関係を規定する明示的な方程式を明らかにすることを目的とする。
このAI駆動の知識発見を通じて、地形の特徴と降水パターンの関連性に光を当てた、これまで公表されていなかった明示的な方程式が明らかになった。
論文 参考訳(メタデータ) (2023-09-27T04:47:22Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - Extreme precipitation forecasting using attention augmented convolutions [0.913755431537592]
降雨予測のための自己注意型拡張畳み込み機構を提案する。
実験の結果,このフレームワークは古典的畳み込みモデルよりも12%優れていた。
提案手法は,極端な変化の物理的原因を把握するためのツールとして,機械学習を向上させる。
論文 参考訳(メタデータ) (2022-01-31T18:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。