Exploring In-Context Learning for Frame-Semantic Parsing
- URL: http://arxiv.org/abs/2507.23082v1
- Date: Wed, 30 Jul 2025 20:29:17 GMT
- Title: Exploring In-Context Learning for Frame-Semantic Parsing
- Authors: Diego Garat, Guillermo Moncecchi, Dina Wonsever,
- Abstract summary: We propose a method that automatically generates task-specific prompts for the Frame Identification (FI) and Frame Semantic Role Labeling (FSRL) subtasks.<n>The method achieves competitive results, with F1 scores of 94.3% for FI and 77.4% for FSRL.<n>The findings suggest that ICL offers a practical and effective alternative to traditional fine-tuning for domain-specific FSP tasks.
- Score: 0.8192907805418581
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Frame Semantic Parsing (FSP) entails identifying predicates and labeling their arguments according to Frame Semantics. This paper investigates the use of In-Context Learning (ICL) with Large Language Models (LLMs) to perform FSP without model fine-tuning. We propose a method that automatically generates task-specific prompts for the Frame Identification (FI) and Frame Semantic Role Labeling (FSRL) subtasks, relying solely on the FrameNet database. These prompts, constructed from frame definitions and annotated examples, are used to guide six different LLMs. Experiments are conducted on a subset of frames related to violent events. The method achieves competitive results, with F1 scores of 94.3% for FI and 77.4% for FSRL. The findings suggest that ICL offers a practical and effective alternative to traditional fine-tuning for domain-specific FSP tasks.
Related papers
- Logic-in-Frames: Dynamic Keyframe Search via Visual Semantic-Logical Verification for Long Video Understanding [23.022070084937603]
We introduce a semantics-driven search framework that reformulates selection under the paradigm of Visual Semantic-Logical Search.<n>Our method establishes new SOTA performance on the manually annotated benchmark in key-frame selection metrics.
arXiv Detail & Related papers (2025-03-17T13:07:34Z) - DSV-LFS: Unifying LLM-Driven Semantic Cues with Visual Features for Robust Few-Shot Segmentation [2.7624021966289605]
Few-shot semantic segmentation (FSS) aims to enable models to segment novel/unseen object classes using only a limited number of labeled examples.<n>We propose a novel framework that utilizes large language models (LLMs) to adapt general class semantic information to the query image.<n>Our framework achieves state-of-the-art performance-by a significant margin-demonstrating superior generalization to novel classes and robustness across diverse scenarios.
arXiv Detail & Related papers (2025-03-06T01:42:28Z) - Scene Graph Generation with Role-Playing Large Language Models [50.252588437973245]
Current approaches for open-vocabulary scene graph generation (OVSGG) use vision-language models such as CLIP.
We propose SDSGG, a scene-specific description based OVSGG framework.
To capture the complicated interplay between subjects and objects, we propose a new lightweight module called mutual visual adapter.
arXiv Detail & Related papers (2024-10-20T11:40:31Z) - Beyond Mask: Rethinking Guidance Types in Few-shot Segmentation [67.35274834837064]
We develop a universal vision-language framework (UniFSS) to integrate prompts from text, mask, box, and image.
UniFSS significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-07-16T08:41:01Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
We propose a simple yet effective method, Global-Local Semantic Consistent Learning (GLSCL)
GLSCL capitalizes on latent shared semantics across modalities for text-video retrieval.
Our method achieves comparable performance with SOTA as well as being nearly 220 times faster in terms of computational cost.
arXiv Detail & Related papers (2024-05-21T11:59:36Z) - Cross-domain Chinese Sentence Pattern Parsing [67.1381983012038]
Sentence Pattern Structure (SPS) parsing is a syntactic analysis method primarily employed in language teaching.
Existing SPSs rely heavily on textbook corpora for training, lacking cross-domain capability.
This paper proposes an innovative approach leveraging large language models (LLMs) within a self-training framework.
arXiv Detail & Related papers (2024-02-26T05:30:48Z) - Coverage-based Example Selection for In-Context Learning [27.215972147196805]
We show that BERTScore-Recall (BSR) selects better examples that demonstrate more of the salient aspects of the test input.
On 15 datasets spanning 6 tasks and with 7 diverse LLMs, we show that (1) BSR is the superior metric for in-context example selection across the board, and (2) for compositional tasks, Set-BSR outperforms independent ranking by up to 17 points on average.
arXiv Detail & Related papers (2023-05-24T08:58:28Z) - CLIP4STR: A Simple Baseline for Scene Text Recognition with Pre-trained Vision-Language Model [55.321010757641524]
We introduce CLIP4STR, a simple yet effective STR method built upon image and text encoders of CLIP.<n>We scale CLIP4STR in terms of the model size, pre-training data, and training data, achieving state-of-the-art performance on 13 STR benchmarks.
arXiv Detail & Related papers (2023-05-23T12:51:20Z) - Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic
Frame Induction [24.486546938073907]
We propose a method that applies deep metric learning to semantic frame induction tasks.
A pre-trained language model is fine-tuned to be suitable for distinguishing frame element roles.
Experimental results on FrameNet demonstrate that our method achieves substantially better performance than existing methods.
arXiv Detail & Related papers (2023-05-23T11:02:28Z) - Knowledge-augmented Frame Semantic Parsing with Hybrid Prompt-tuning [17.6573121083417]
We propose a Knowledge-Augmented Frame Semantic Parsing Architecture (KAF-SPA) to enhance semantic representation.
A Memory-based Knowledge Extraction Module (MKEM) is devised to select accurate frame knowledge and construct the continuous templates.
We also design a Task-oriented Knowledge Probing Module (TKPM) using hybrid prompts to incorporate the selected knowledge into the PLMs and adapt PLMs to the tasks of frame and argument identification.
arXiv Detail & Related papers (2023-03-25T06:41:19Z) - Query Your Model with Definitions in FrameNet: An Effective Method for
Frame Semantic Role Labeling [43.58108941071302]
Frame Semantic Role Labeling (FSRL) identifies arguments and labels them with frame roles defined in FrameNet.
We propose a query-based framework named ArGument Extractor with Definitions in FrameNet (AGED) to mitigate these problems.
arXiv Detail & Related papers (2022-12-05T05:09:12Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
We propose a unified framework calledInter-class DiscrepancyAlignment(IDA)
IDA-DAO is used to align the similarity scores considering the discrepancy between the images and its neighbors.
IDA-SSE can provide convincing inter-class neighbors by introducing virtual candidate images generated with GAN.
arXiv Detail & Related papers (2021-03-02T08:20:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.