FLOSS: Federated Learning with Opt-Out and Straggler Support
- URL: http://arxiv.org/abs/2507.23115v1
- Date: Wed, 30 Jul 2025 21:34:56 GMT
- Title: FLOSS: Federated Learning with Opt-Out and Straggler Support
- Authors: David J Goetze, Dahlia J Felten, Jeannie R Albrecht, Rohit Bhattacharya,
- Abstract summary: Modern data privacy agreements empower users to use the system while opting out of sharing their data as desired.<n>The result is missing data from a variety of sources that introduces bias and degrades model performance.<n>We present FLOSS, a system that mitigates the impacts of such missing data on federated learning in the presence of stragglers and user opt-out.
- Score: 1.8499314936771563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous work on data privacy in federated learning systems focuses on privacy-preserving operations for data from users who have agreed to share their data for training. However, modern data privacy agreements also empower users to use the system while opting out of sharing their data as desired. When combined with stragglers that arise from heterogeneous device capabilities, the result is missing data from a variety of sources that introduces bias and degrades model performance. In this paper, we present FLOSS, a system that mitigates the impacts of such missing data on federated learning in the presence of stragglers and user opt-out, and empirically demonstrate its performance in simulations.
Related papers
- Non-IID data in Federated Learning: A Survey with Taxonomy, Metrics, Methods, Frameworks and Future Directions [2.9434966603161072]
Federated Learning (FL) enables users to collectively train ML models without sharing private data.<n>FL struggles when data across clients is not independent and identically distributed (non-IID) data.<n>This technical survey aims to fill that gap by providing a detailed taxonomy for non-IID data, partition protocols, and metrics.
arXiv Detail & Related papers (2024-11-19T09:53:28Z) - Approximate Gradient Coding for Privacy-Flexible Federated Learning with Non-IID Data [9.984630251008868]
This work focuses on the challenges of non-IID data and stragglers/dropouts in federated learning.
We introduce and explore a privacy-flexible paradigm that models parts of the clients' local data as non-private.
arXiv Detail & Related papers (2024-04-04T15:29:50Z) - FewFedPIT: Towards Privacy-preserving and Few-shot Federated Instruction Tuning [54.26614091429253]
Federated instruction tuning (FedIT) is a promising solution, by consolidating collaborative training across multiple data owners.
FedIT encounters limitations such as scarcity of instructional data and risk of exposure to training data extraction attacks.
We propose FewFedPIT, designed to simultaneously enhance privacy protection and model performance of federated few-shot learning.
arXiv Detail & Related papers (2024-03-10T08:41:22Z) - Personalized Federated Learning with Attention-based Client Selection [57.71009302168411]
We propose FedACS, a new PFL algorithm with an Attention-based Client Selection mechanism.
FedACS integrates an attention mechanism to enhance collaboration among clients with similar data distributions.
Experiments on CIFAR10 and FMNIST validate FedACS's superiority.
arXiv Detail & Related papers (2023-12-23T03:31:46Z) - Privacy Side Channels in Machine Learning Systems [87.53240071195168]
We introduce privacy side channels: attacks that exploit system-level components to extract private information.
For example, we show that deduplicating training data before applying differentially-private training creates a side-channel that completely invalidates any provable privacy guarantees.
We further show that systems which block language models from regenerating training data can be exploited to exfiltrate private keys contained in the training set.
arXiv Detail & Related papers (2023-09-11T16:49:05Z) - Benchmarking FedAvg and FedCurv for Image Classification Tasks [1.376408511310322]
This paper focuses on the problem of statistical heterogeneity of the data in the same federated network.
Several Federated Learning algorithms, such as FedAvg, FedProx and Federated Curvature (FedCurv) have already been proposed.
As a side product of this work, we release the non-IID version of the datasets we used so to facilitate further comparisons from the FL community.
arXiv Detail & Related papers (2023-03-31T10:13:01Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Federated Learning in Non-IID Settings Aided by Differentially Private
Synthetic Data [20.757477553095637]
Federated learning (FL) is a privacy-promoting framework that enables clients to collaboratively train machine learning models.
A major challenge in federated learning arises when the local data is heterogeneous.
We propose FedDPMS, an FL algorithm in which clients deploy variational auto-encoders to augment local datasets with data synthesized using differentially private means of latent data representations.
arXiv Detail & Related papers (2022-06-01T18:00:48Z) - Jointly Learning from Decentralized (Federated) and Centralized Data to
Mitigate Distribution Shift [2.9965560298318468]
Federated Learning (FL) is an increasingly used paradigm where learning takes place collectively on edge devices.
Yet a distribution shift may still exist; the on-device training examples may lack for some data inputs expected to be encountered at inference time.
This paper proposes a way to mitigate this shift: selective usage of datacenter data, mixed in with FL.
arXiv Detail & Related papers (2021-11-23T20:51:24Z) - Federated Mixture of Experts [94.25278695272874]
FedMix is a framework that allows us to train an ensemble of specialized models.
We show that users with similar data characteristics select the same members and therefore share statistical strength.
arXiv Detail & Related papers (2021-07-14T14:15:24Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
Federated learning (FL) is a popular technique to train machine learning (ML) models on decentralized data sources.
The Shapley value (SV) defines a unique payoff scheme that satisfies many desiderata for a data value notion.
This paper proposes a variant of the SV amenable to FL, which we call the federated Shapley value.
arXiv Detail & Related papers (2020-09-14T04:37:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.